SawitDetection / app.py
Dede16's picture
Update app.py
57cd36e verified
raw
history blame
1.43 kB
import os
import uuid
import pandas as pd
import cv2
from ultralytics import YOLO
# Initialize the YOLO model
model = YOLO('best.pt')
# Define directories
image_dir = 'datasetsw/valid/ripe'
output_dir = 'datasetsw/valid/test_ripe'
# List all image files in the directory
image_files = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.endswith(('.jpg', '.jpeg', '.png'))]
# Initialize an empty list to store the results
results_list = []
# Process each image
for image_file in image_files:
results = model(image_file)
annotated_frame = results[0].plot()
total_objects = len(results[0].boxes)
labels = results[0].boxes.cls.tolist()
matang_count = labels.count(0)
mentah_count = labels.count(1)
# Generate a unique filename and save the annotated image
unique_id = str(uuid.uuid4())
combined_filename = f"{unique_id}.jpg"
output_path = os.path.join(output_dir, combined_filename)
cv2.imwrite(output_path, annotated_frame)
# Append the results to the list
results_list.append({
'image_file': image_file,
'total_objects': total_objects,
'matang_count': matang_count,
'mentah_count': mentah_count
})
# Convert the results list to a dataframe
results_df = pd.DataFrame(results_list)
# Save the dataframe to a CSV file
results_df.to_csv(os.path.join(output_dir, 'detection_results.csv'), index=False)
cv2.destroyAllWindows()