Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
import time
|
4 |
+
from gradio_client import Client, handle_file
|
5 |
+
import zipfile
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Configuration
|
9 |
+
INPUT_DIR = "input_images" # Folder with original images
|
10 |
+
OUTPUT_DIR = "output_images" # Base output folder
|
11 |
+
DATASET_DIR = os.path.join(OUTPUT_DIR, "dataset") # Subfolder for organized dataset
|
12 |
+
ZIP_FILE = os.path.join(OUTPUT_DIR, "dataset.zip") # Path for the output ZIP file
|
13 |
+
TARGET_SIZE = (512, 512) # Target size for Stable Diffusion (SD 1.5)
|
14 |
+
HUGGINGFACE_SPACE_URL = "bdsqlsz/Florence-2-SD3-Captioner"
|
15 |
+
|
16 |
+
# Ensure output and dataset directories exist
|
17 |
+
os.makedirs(DATASET_DIR, exist_ok=True)
|
18 |
+
|
19 |
+
def resize_and_crop_image(input_path, output_path, target_size):
|
20 |
+
"""Resize and crop an image to the target size while preserving aspect ratio."""
|
21 |
+
try:
|
22 |
+
img = Image.open(input_path).convert("RGB")
|
23 |
+
width, height = img.size
|
24 |
+
target_width, target_height = target_size
|
25 |
+
img_ratio = width / height
|
26 |
+
target_ratio = target_width / target_height
|
27 |
+
|
28 |
+
if img_ratio > target_ratio:
|
29 |
+
new_height = target_height
|
30 |
+
new_width = int(new_height * img_ratio)
|
31 |
+
else:
|
32 |
+
new_width = target_width
|
33 |
+
new_height = int(new_width / img_ratio)
|
34 |
+
|
35 |
+
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
36 |
+
left = (new_width - target_width) // 2
|
37 |
+
top = (new_height - target_height) // 2
|
38 |
+
right = left + target_width
|
39 |
+
bottom = top + target_height
|
40 |
+
img = img.crop((left, top, right, bottom))
|
41 |
+
img.save(output_path, "JPEG", quality=95)
|
42 |
+
return True
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error processing {input_path}: {e}")
|
45 |
+
return False
|
46 |
+
|
47 |
+
def get_caption_from_florence(image_path):
|
48 |
+
"""Call the Florence-2-SD3-Captioner /process_image endpoint via Gradio API."""
|
49 |
+
try:
|
50 |
+
client = Client(HUGGINGFACE_SPACE_URL)
|
51 |
+
result = client.predict(
|
52 |
+
image=handle_file(image_path),
|
53 |
+
api_name="/process_image"
|
54 |
+
)
|
55 |
+
return result if isinstance(result, str) else "No caption returned"
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error captioning {image_path}: {e}")
|
58 |
+
return "Captioning failed"
|
59 |
+
|
60 |
+
def create_zip_file():
|
61 |
+
"""Create a ZIP file of the dataset folder."""
|
62 |
+
with zipfile.ZipFile(ZIP_FILE, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
63 |
+
for root, _, files in os.walk(DATASET_DIR):
|
64 |
+
for file in files:
|
65 |
+
file_path = os.path.join(root, file)
|
66 |
+
arcname = os.path.relpath(file_path, OUTPUT_DIR)
|
67 |
+
zipf.write(file_path, arcname)
|
68 |
+
return ZIP_FILE
|
69 |
+
|
70 |
+
def process_images():
|
71 |
+
"""Process all images and return status."""
|
72 |
+
if not os.path.exists(INPUT_DIR):
|
73 |
+
return f"Input directory '{INPUT_DIR}' not found."
|
74 |
+
|
75 |
+
image_files = [f for f in os.listdir(INPUT_DIR) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
76 |
+
if not image_files:
|
77 |
+
return f"No images found in '{INPUT_DIR}'."
|
78 |
+
|
79 |
+
for idx, filename in enumerate(image_files, 1):
|
80 |
+
input_path = os.path.join(INPUT_DIR, filename)
|
81 |
+
base_name = f"img{idx}"
|
82 |
+
output_image_path = os.path.join(DATASET_DIR, f"{base_name}.jpg")
|
83 |
+
caption_file_path = os.path.join(DATASET_DIR, f"{base_name}.txt")
|
84 |
+
|
85 |
+
print(f"Processing {idx}/{len(image_files)}: {filename}")
|
86 |
+
|
87 |
+
if resize_and_crop_image(input_path, output_image_path, TARGET_SIZE):
|
88 |
+
caption = get_caption_from_florence(output_image_path)
|
89 |
+
print(f"Caption: {caption}")
|
90 |
+
with open(caption_file_path, "w", encoding="utf-8") as f:
|
91 |
+
f.write(caption)
|
92 |
+
else:
|
93 |
+
print(f"Skipping captioning for {filename} due to processing error.")
|
94 |
+
|
95 |
+
time.sleep(1) # Avoid overwhelming the API
|
96 |
+
|
97 |
+
# Create ZIP file after processing
|
98 |
+
zip_path = create_zip_file()
|
99 |
+
return f"Processing complete! ZIP file created at {zip_path}"
|
100 |
+
|
101 |
+
def launch_interface():
|
102 |
+
"""Launch Gradio interface with a download button after processing."""
|
103 |
+
status = process_images()
|
104 |
+
|
105 |
+
with gr.Blocks(title="Image Processing and Download") as demo:
|
106 |
+
gr.Markdown("### Image Processing Status")
|
107 |
+
status_text = gr.Textbox(value=status, label="Status", interactive=False)
|
108 |
+
|
109 |
+
if "Processing complete" in status:
|
110 |
+
gr.Markdown("### Download Your Dataset")
|
111 |
+
download_button = gr.File(label="Download ZIP", value=ZIP_FILE)
|
112 |
+
else:
|
113 |
+
gr.Markdown("No ZIP file available due to processing errors.")
|
114 |
+
|
115 |
+
demo.launch()
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
print("Starting image processing and captioning...")
|
119 |
+
launch_interface()
|