import os import numpy as np import matplotlib.pyplot as plt import gradio as gr from typing import Dict, List, Any, Optional, Tuple import spaces from detection_model import DetectionModel from color_mapper import ColorMapper from evaluation_metrics import EvaluationMetrics from style import Style from image_processor import ImageProcessor # Initialize image processor image_processor = ImageProcessor() def get_all_classes(): """ Get all available COCO classes from the currently active model or fallback to standard COCO classes Returns: List of tuples (class_id, class_name) """ # Try to get class names from any loaded model for model_name, model_instance in image_processor.model_instances.items(): if model_instance and model_instance.is_model_loaded: try: class_names = model_instance.class_names return [(idx, name) for idx, name in class_names.items()] except Exception: pass # Fallback to standard COCO classes return [ (0, 'person'), (1, 'bicycle'), (2, 'car'), (3, 'motorcycle'), (4, 'airplane'), (5, 'bus'), (6, 'train'), (7, 'truck'), (8, 'boat'), (9, 'traffic light'), (10, 'fire hydrant'), (11, 'stop sign'), (12, 'parking meter'), (13, 'bench'), (14, 'bird'), (15, 'cat'), (16, 'dog'), (17, 'horse'), (18, 'sheep'), (19, 'cow'), (20, 'elephant'), (21, 'bear'), (22, 'zebra'), (23, 'giraffe'), (24, 'backpack'), (25, 'umbrella'), (26, 'handbag'), (27, 'tie'), (28, 'suitcase'), (29, 'frisbee'), (30, 'skis'), (31, 'snowboard'), (32, 'sports ball'), (33, 'kite'), (34, 'baseball bat'), (35, 'baseball glove'), (36, 'skateboard'), (37, 'surfboard'), (38, 'tennis racket'), (39, 'bottle'), (40, 'wine glass'), (41, 'cup'), (42, 'fork'), (43, 'knife'), (44, 'spoon'), (45, 'bowl'), (46, 'banana'), (47, 'apple'), (48, 'sandwich'), (49, 'orange'), (50, 'broccoli'), (51, 'carrot'), (52, 'hot dog'), (53, 'pizza'), (54, 'donut'), (55, 'cake'), (56, 'chair'), (57, 'couch'), (58, 'potted plant'), (59, 'bed'), (60, 'dining table'), (61, 'toilet'), (62, 'tv'), (63, 'laptop'), (64, 'mouse'), (65, 'remote'), (66, 'keyboard'), (67, 'cell phone'), (68, 'microwave'), (69, 'oven'), (70, 'toaster'), (71, 'sink'), (72, 'refrigerator'), (73, 'book'), (74, 'clock'), (75, 'vase'), (76, 'scissors'), (77, 'teddy bear'), (78, 'hair drier'), (79, 'toothbrush') ] @spaces.GPU def process_and_plot(image, model_name, confidence_threshold, filter_classes=None): """ Process image and create plots for statistics with enhanced visualization Args: image: Input image model_name: Name of the model to use confidence_threshold: Confidence threshold for detection filter_classes: Optional list of classes to filter results Returns: Tuple of (result_image, result_text, formatted_stats, plot_figure) """ class_ids = None if filter_classes: class_ids = [] for class_str in filter_classes: try: # Extract ID from format "id: name" class_id = int(class_str.split(":")[0].strip()) class_ids.append(class_id) except: continue # Execute detection result_image, result_text, stats = image_processor.process_image( image, model_name, confidence_threshold, class_ids ) # Format the statistics for better display formatted_stats = image_processor.format_json_for_display(stats) if not stats or "class_statistics" not in stats or not stats["class_statistics"]: # Create the table fig, ax = plt.subplots(figsize=(8, 6)) ax.text(0.5, 0.5, "No detection data available", ha='center', va='center', fontsize=14, fontfamily='Arial') ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.axis('off') plot_figure = fig else: # Prepare visualization data available_classes = dict(get_all_classes()) viz_data = image_processor.prepare_visualization_data(stats, available_classes) # Create plot plot_figure = EvaluationMetrics.create_enhanced_stats_plot(viz_data) return result_image, result_text, formatted_stats, plot_figure def create_interface(): """創建 Gradio 界面,包含美化的視覺效果""" css = Style.get_css() # 獲取可用模型信息 available_models = DetectionModel.get_available_models() model_choices = [model["model_file"] for model in available_models] model_labels = [f"{model['name']} - {model['inference_speed']}" for model in available_models] # 可用類別過濾選項 available_classes = get_all_classes() class_choices = [f"{id}: {name}" for id, name in available_classes] # 創建 Gradio Blocks 界面 with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="teal", secondary_hue="blue")) as demo: # 頁面頂部標題 with gr.Group(elem_classes="app-header"): gr.HTML("""

VisionScout

Detect and identify objects in your images

""") current_model = gr.State("yolov8m.pt") # use medium size model as defualt # 主要內容區 with gr.Row(equal_height=True): # 左側 - 輸入控制區(可上傳圖片) with gr.Column(scale=4, elem_classes="input-panel"): with gr.Group(): gr.HTML('
Upload Image
') image_input = gr.Image(type="pil", label="Upload an image", elem_classes="upload-box") with gr.Accordion("Advanced Settings", open=False): with gr.Row(): model_dropdown = gr.Dropdown( choices=model_choices, value="yolov8m.pt", label="Select Model", info="Choose different models based on your needs for speed vs. accuracy" ) # display model info model_info = gr.Markdown(DetectionModel.get_model_description("yolov8m.pt")) confidence = gr.Slider( minimum=0.1, maximum=0.9, value=0.25, step=0.05, label="Confidence Threshold", info="Higher values show fewer but more confident detections" ) with gr.Accordion("Filter Classes", open=False): # 常見物件類別快速選擇按鈕 gr.HTML('
Common Categories
') with gr.Row(): people_btn = gr.Button("People", size="sm") vehicles_btn = gr.Button("Vehicles", size="sm") animals_btn = gr.Button("Animals", size="sm") objects_btn = gr.Button("Common Objects", size="sm") # 類別選擇下拉框 class_filter = gr.Dropdown( choices=class_choices, multiselect=True, label="Select Classes to Display", info="Leave empty to show all detected objects" ) # detect buttom detect_btn = gr.Button("Detect Objects", variant="primary", elem_classes="detect-btn") # 使用說明區 with gr.Group(elem_classes="how-to-use"): gr.HTML('
How to Use
') gr.Markdown(""" 1. Upload an image or use the camera 2. (Optional) Adjust settings like confidence threshold or model size (n, m, x) 3. Optionally filter to specific object classes 4. Click "Detect Objects" button The model will identify objects in your image and display them with bounding boxes. **Note:** Detection quality depends on image clarity and model settings. """) # 右側 - 結果顯示區 with gr.Column(scale=6, elem_classes="output-panel"): with gr.Tabs(elem_classes="tabs"): with gr.Tab("Detection Result"): result_image = gr.Image(type="pil", label="Detection Result") # details summary with gr.Group(elem_classes="result-details-box"): gr.HTML('
Detection Details
') # 文本框設置,讓顯示會更寬 result_text = gr.Textbox( label=None, lines=12, max_lines=15, elem_classes="wide-result-text", elem_id="detection-details", container=False, scale=2, min_width=600 ) with gr.Tab("Statistics"): with gr.Row(): with gr.Column(scale=3, elem_classes="plot-column"): gr.HTML('
Object Distribution
') plot_output = gr.Plot( label=None, elem_classes="large-plot-container" ) # 右側放 JSON 數據比較清晰 with gr.Column(scale=2, elem_classes="stats-column"): gr.HTML('
Detection Statistics
') stats_json = gr.JSON( label=None, # remove label elem_classes="enhanced-json-display" ) detect_btn.click( fn=process_and_plot, inputs=[image_input, current_model, confidence, class_filter], outputs=[result_image, result_text, stats_json, plot_output] ) # model option model_dropdown.change( fn=lambda model: (model, DetectionModel.get_model_description(model)), inputs=[model_dropdown], outputs=[current_model, model_info] ) # each classes link people_classes = [0] # 人 vehicles_classes = [1, 2, 3, 4, 5, 6, 7, 8] # 各種車輛 animals_classes = list(range(14, 24)) # COCO 中的動物 common_objects = [41, 42, 43, 44, 45, 67, 73, 74, 76] # 常見家居物品 # Linked the quik buttom people_btn.click( lambda: [f"{id}: {name}" for id, name in available_classes if id in people_classes], outputs=class_filter ) vehicles_btn.click( lambda: [f"{id}: {name}" for id, name in available_classes if id in vehicles_classes], outputs=class_filter ) animals_btn.click( lambda: [f"{id}: {name}" for id, name in available_classes if id in animals_classes], outputs=class_filter ) objects_btn.click( lambda: [f"{id}: {name}" for id, name in available_classes if id in common_objects], outputs=class_filter ) example_images = [ "room_01.jpg", "street_01.jpg", "street_02.jpg", "street_03.jpg" ] # add example images gr.Examples( examples=example_images, inputs=image_input, outputs=None, fn=None, cache_examples=False, ) # Footer gr.HTML(""" """) return demo if __name__ == "__main__": import time demo = create_interface() demo.launch()