Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,988 Bytes
1487b33 de894d3 1487b33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import os
import numpy as np
import torch
import cv2
from PIL import Image
import tempfile
import uuid
from typing import Dict, List, Any, Optional, Tuple
from detection_model import DetectionModel
from color_mapper import ColorMapper
from visualization_helper import VisualizationHelper
from evaluation_metrics import EvaluationMetrics
class ImageProcessor:
"""
Class for handling image processing and object detection operations
Separates processing logic from UI components
"""
def __init__(self):
"""Initialize the image processor with required components"""
self.color_mapper = ColorMapper()
self.model_instances = {}
def get_model_instance(self, model_name: str, confidence: float = 0.25, iou: float = 0.35) -> DetectionModel:
"""
Get or create a model instance based on model name
Args:
model_name: Name of the model to use
confidence: Confidence threshold for detection
iou: IoU threshold for non-maximum suppression
Returns:
DetectionModel instance
"""
if model_name not in self.model_instances:
print(f"Creating new model instance for {model_name}")
self.model_instances[model_name] = DetectionModel(
model_name=model_name,
confidence=confidence,
iou=iou
)
else:
print(f"Using existing model instance for {model_name}")
self.model_instances[model_name].confidence = confidence
return self.model_instances[model_name]
def process_image(self, image, model_name: str, confidence_threshold: float, filter_classes: Optional[List[int]] = None) -> Tuple[Any, str, Dict]:
"""
Process an image for object detection
Args:
image: Input image (numpy array or PIL Image)
model_name: Name of the model to use
confidence_threshold: Confidence threshold for detection
filter_classes: Optional list of classes to filter results
Returns:
Tuple of (result_image, result_text, stats_data)
"""
# Get model instance
model_instance = self.get_model_instance(model_name, confidence_threshold)
# Initialize key variables
result = None
stats = {}
temp_path = None
try:
# Processing input image
if isinstance(image, np.ndarray):
# Convert BGR to RGB if needed
if image.shape[2] == 3:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image_rgb = image
pil_image = Image.fromarray(image_rgb)
elif image is None:
return None, "No image provided. Please upload an image.", {}
else:
pil_image = image
# Store temp files
temp_dir = tempfile.gettempdir() # Use system temp directory
temp_filename = f"temp_{uuid.uuid4().hex}.jpg"
temp_path = os.path.join(temp_dir, temp_filename)
pil_image.save(temp_path)
# Object detection
result = model_instance.detect(temp_path)
if result is None:
return None, "Detection failed. Please try again with a different image.", {}
# Calculate stats
stats = EvaluationMetrics.calculate_basic_stats(result)
# Add space calculation
spatial_metrics = EvaluationMetrics.calculate_distance_metrics(result)
stats["spatial_metrics"] = spatial_metrics
# Apply filter if specified
if filter_classes and len(filter_classes) > 0:
# Get classes, boxes, confidence
classes = result.boxes.cls.cpu().numpy().astype(int)
confs = result.boxes.conf.cpu().numpy()
boxes = result.boxes.xyxy.cpu().numpy()
mask = np.zeros_like(classes, dtype=bool)
for cls_id in filter_classes:
mask = np.logical_or(mask, classes == cls_id)
filtered_stats = {
"total_objects": int(np.sum(mask)),
"class_statistics": {},
"average_confidence": float(np.mean(confs[mask])) if np.any(mask) else 0,
"spatial_metrics": stats["spatial_metrics"]
}
# Update stats
names = result.names
for cls, conf in zip(classes[mask], confs[mask]):
cls_name = names[int(cls)]
if cls_name not in filtered_stats["class_statistics"]:
filtered_stats["class_statistics"][cls_name] = {
"count": 0,
"average_confidence": 0
}
filtered_stats["class_statistics"][cls_name]["count"] += 1
filtered_stats["class_statistics"][cls_name]["average_confidence"] = conf
stats = filtered_stats
viz_data = EvaluationMetrics.generate_visualization_data(
result,
self.color_mapper.get_all_colors()
)
result_image = VisualizationHelper.visualize_detection(
temp_path, result, color_mapper=self.color_mapper, figsize=(12, 12), return_pil=True, filter_classes=filter_classes
)
result_text = EvaluationMetrics.format_detection_summary(viz_data)
return result_image, result_text, stats
except Exception as e:
error_message = f"Error Occurs: {str(e)}"
import traceback
traceback.print_exc()
print(error_message)
return None, error_message, {}
finally:
if temp_path and os.path.exists(temp_path):
try:
os.remove(temp_path)
except Exception as e:
print(f"Cannot delete temp files {temp_path}: {str(e)}")
def format_result_text(self, stats: Dict) -> str:
"""
Format detection statistics into readable text with improved spacing
Args:
stats: Dictionary containing detection statistics
Returns:
Formatted text summary
"""
if not stats or "total_objects" not in stats:
return "No objects detected."
# 減少不必要的空行
lines = [
f"Detected {stats['total_objects']} objects.",
f"Average confidence: {stats.get('average_confidence', 0):.2f}",
"Objects by class:"
]
if "class_statistics" in stats and stats["class_statistics"]:
# 按計數排序類別
sorted_classes = sorted(
stats["class_statistics"].items(),
key=lambda x: x[1]["count"],
reverse=True
)
for cls_name, cls_stats in sorted_classes:
count = cls_stats["count"]
conf = cls_stats.get("average_confidence", 0)
item_text = "item" if count == 1 else "items"
lines.append(f"• {cls_name}: {count} {item_text} (avg conf: {conf:.2f})")
else:
lines.append("No class information available.")
# 添加空間信息
if "spatial_metrics" in stats and "spatial_distribution" in stats["spatial_metrics"]:
lines.append("Object Distribution:")
dist = stats["spatial_metrics"]["spatial_distribution"]
x_mean = dist.get("x_mean", 0)
y_mean = dist.get("y_mean", 0)
# 描述物體的大致位置
if x_mean < 0.33:
h_pos = "on the left side"
elif x_mean < 0.67:
h_pos = "in the center"
else:
h_pos = "on the right side"
if y_mean < 0.33:
v_pos = "in the upper part"
elif y_mean < 0.67:
v_pos = "in the middle"
else:
v_pos = "in the lower part"
lines.append(f"• Most objects appear {h_pos} {v_pos} of the image")
return "\n".join(lines)
def format_json_for_display(self, stats: Dict) -> Dict:
"""
Format statistics JSON for better display
Args:
stats: Raw statistics dictionary
Returns:
Formatted statistics structure for display
"""
# Create a cleaner copy of the stats for display
display_stats = {}
# Add summary section
display_stats["summary"] = {
"total_objects": stats.get("total_objects", 0),
"average_confidence": round(stats.get("average_confidence", 0), 3)
}
# Add class statistics in a more organized way
if "class_statistics" in stats and stats["class_statistics"]:
# Sort classes by count (descending)
sorted_classes = sorted(
stats["class_statistics"].items(),
key=lambda x: x[1].get("count", 0),
reverse=True
)
class_stats = {}
for cls_name, cls_data in sorted_classes:
class_stats[cls_name] = {
"count": cls_data.get("count", 0),
"average_confidence": round(cls_data.get("average_confidence", 0), 3)
}
display_stats["detected_objects"] = class_stats
# Simplify spatial metrics
if "spatial_metrics" in stats:
spatial = stats["spatial_metrics"]
# Simplify spatial distribution
if "spatial_distribution" in spatial:
dist = spatial["spatial_distribution"]
display_stats["spatial"] = {
"distribution": {
"x_mean": round(dist.get("x_mean", 0), 3),
"y_mean": round(dist.get("y_mean", 0), 3),
"x_std": round(dist.get("x_std", 0), 3),
"y_std": round(dist.get("y_std", 0), 3)
}
}
# Add simplified size information
if "size_distribution" in spatial:
size = spatial["size_distribution"]
display_stats["spatial"]["size"] = {
"mean_area": round(size.get("mean_area", 0), 3),
"min_area": round(size.get("min_area", 0), 3),
"max_area": round(size.get("max_area", 0), 3)
}
return display_stats
def prepare_visualization_data(self, stats: Dict, available_classes: Dict[int, str]) -> Dict:
"""
Prepare data for visualization based on detection statistics
Args:
stats: Detection statistics
available_classes: Dictionary of available class IDs and names
Returns:
Visualization data dictionary
"""
if not stats or "class_statistics" not in stats or not stats["class_statistics"]:
return {"error": "No detection data available"}
# Prepare visualization data
viz_data = {
"total_objects": stats.get("total_objects", 0),
"average_confidence": stats.get("average_confidence", 0),
"class_data": []
}
# Class data
for cls_name, cls_stats in stats.get("class_statistics", {}).items():
# Search class ID
class_id = -1
for id, name in available_classes.items():
if name == cls_name:
class_id = id
break
cls_data = {
"name": cls_name,
"class_id": class_id,
"count": cls_stats.get("count", 0),
"average_confidence": cls_stats.get("average_confidence", 0),
"color": self.color_mapper.get_color(class_id if class_id >= 0 else cls_name)
}
viz_data["class_data"].append(cls_data)
# Descending order
viz_data["class_data"].sort(key=lambda x: x["count"], reverse=True)
return viz_data
|