Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,000 Bytes
611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 0137ce3 611206a 1487b33 611206a 1487b33 0137ce3 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a 1487b33 611206a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import os
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
from typing import Dict, List, Any, Optional, Tuple
import spaces
from detection_model import DetectionModel
from color_mapper import ColorMapper
from evaluation_metrics import EvaluationMetrics
from style import Style
from image_processor import ImageProcessor
# Initialize image processor
image_processor = ImageProcessor()
def get_all_classes():
"""
Get all available COCO classes from the currently active model or fallback to standard COCO classes
Returns:
List of tuples (class_id, class_name)
"""
# Try to get class names from any loaded model
for model_name, model_instance in image_processor.model_instances.items():
if model_instance and model_instance.is_model_loaded:
try:
class_names = model_instance.class_names
return [(idx, name) for idx, name in class_names.items()]
except Exception:
pass
# Fallback to standard COCO classes
return [
(0, 'person'), (1, 'bicycle'), (2, 'car'), (3, 'motorcycle'), (4, 'airplane'),
(5, 'bus'), (6, 'train'), (7, 'truck'), (8, 'boat'), (9, 'traffic light'),
(10, 'fire hydrant'), (11, 'stop sign'), (12, 'parking meter'), (13, 'bench'),
(14, 'bird'), (15, 'cat'), (16, 'dog'), (17, 'horse'), (18, 'sheep'), (19, 'cow'),
(20, 'elephant'), (21, 'bear'), (22, 'zebra'), (23, 'giraffe'), (24, 'backpack'),
(25, 'umbrella'), (26, 'handbag'), (27, 'tie'), (28, 'suitcase'), (29, 'frisbee'),
(30, 'skis'), (31, 'snowboard'), (32, 'sports ball'), (33, 'kite'), (34, 'baseball bat'),
(35, 'baseball glove'), (36, 'skateboard'), (37, 'surfboard'), (38, 'tennis racket'),
(39, 'bottle'), (40, 'wine glass'), (41, 'cup'), (42, 'fork'), (43, 'knife'),
(44, 'spoon'), (45, 'bowl'), (46, 'banana'), (47, 'apple'), (48, 'sandwich'),
(49, 'orange'), (50, 'broccoli'), (51, 'carrot'), (52, 'hot dog'), (53, 'pizza'),
(54, 'donut'), (55, 'cake'), (56, 'chair'), (57, 'couch'), (58, 'potted plant'),
(59, 'bed'), (60, 'dining table'), (61, 'toilet'), (62, 'tv'), (63, 'laptop'),
(64, 'mouse'), (65, 'remote'), (66, 'keyboard'), (67, 'cell phone'), (68, 'microwave'),
(69, 'oven'), (70, 'toaster'), (71, 'sink'), (72, 'refrigerator'), (73, 'book'),
(74, 'clock'), (75, 'vase'), (76, 'scissors'), (77, 'teddy bear'), (78, 'hair drier'),
(79, 'toothbrush')
]
@spaces.GPU
def process_and_plot(image, model_name, confidence_threshold, filter_classes=None):
"""
Process image and create plots for statistics with enhanced visualization
Args:
image: Input image
model_name: Name of the model to use
confidence_threshold: Confidence threshold for detection
filter_classes: Optional list of classes to filter results
Returns:
Tuple of (result_image, result_text, formatted_stats, plot_figure)
"""
class_ids = None
if filter_classes:
class_ids = []
for class_str in filter_classes:
try:
# Extract ID from format "id: name"
class_id = int(class_str.split(":")[0].strip())
class_ids.append(class_id)
except:
continue
# Execute detection
result_image, result_text, stats = image_processor.process_image(
image,
model_name,
confidence_threshold,
class_ids
)
# Format the statistics for better display
formatted_stats = image_processor.format_json_for_display(stats)
if not stats or "class_statistics" not in stats or not stats["class_statistics"]:
# Create the table
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, "No detection data available",
ha='center', va='center', fontsize=14, fontfamily='Arial')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
plot_figure = fig
else:
# Prepare visualization data
available_classes = dict(get_all_classes())
viz_data = image_processor.prepare_visualization_data(stats, available_classes)
# Create plot
plot_figure = EvaluationMetrics.create_enhanced_stats_plot(viz_data)
return result_image, result_text, formatted_stats, plot_figure
def create_interface():
"""創建 Gradio 界面,包含美化的視覺效果"""
css = Style.get_css()
# 獲取可用模型信息
available_models = DetectionModel.get_available_models()
model_choices = [model["model_file"] for model in available_models]
model_labels = [f"{model['name']} - {model['inference_speed']}" for model in available_models]
# 可用類別過濾選項
available_classes = get_all_classes()
class_choices = [f"{id}: {name}" for id, name in available_classes]
# 創建 Gradio Blocks 界面
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="teal", secondary_hue="blue")) as demo:
# 頁面頂部標題
with gr.Group(elem_classes="app-header"):
gr.HTML("""
<div style="text-align: center; width: 100%;">
<h1 class="app-title">VisionScout</h1>
<h2 class="app-subtitle">Detect and identify objects in your images</h2>
<div class="app-divider"></div>
</div>
""")
current_model = gr.State("yolov8m.pt") # use medium size model as defualt
# 主要內容區
with gr.Row(equal_height=True):
# 左側 - 輸入控制區(可上傳圖片)
with gr.Column(scale=4, elem_classes="input-panel"):
with gr.Group():
gr.HTML('<div class="section-heading">Upload Image</div>')
image_input = gr.Image(type="pil", label="Upload an image", elem_classes="upload-box")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
model_dropdown = gr.Dropdown(
choices=model_choices,
value="yolov8m.pt",
label="Select Model",
info="Choose different models based on your needs for speed vs. accuracy"
)
# display model info
model_info = gr.Markdown(DetectionModel.get_model_description("yolov8m.pt"))
confidence = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.25,
step=0.05,
label="Confidence Threshold",
info="Higher values show fewer but more confident detections"
)
with gr.Accordion("Filter Classes", open=False):
# 常見物件類別快速選擇按鈕
gr.HTML('<div class="section-heading" style="font-size: 1rem;">Common Categories</div>')
with gr.Row():
people_btn = gr.Button("People", size="sm")
vehicles_btn = gr.Button("Vehicles", size="sm")
animals_btn = gr.Button("Animals", size="sm")
objects_btn = gr.Button("Common Objects", size="sm")
# 類別選擇下拉框
class_filter = gr.Dropdown(
choices=class_choices,
multiselect=True,
label="Select Classes to Display",
info="Leave empty to show all detected objects"
)
# detect buttom
detect_btn = gr.Button("Detect Objects", variant="primary", elem_classes="detect-btn")
# 使用說明區
with gr.Group(elem_classes="how-to-use"):
gr.HTML('<div class="section-heading">How to Use</div>')
gr.Markdown("""
1. Upload an image or use the camera
2. (Optional) Adjust settings like confidence threshold or model size (n, m, x)
3. Optionally filter to specific object classes
4. Click "Detect Objects" button
The model will identify objects in your image and display them with bounding boxes.
**Note:** Detection quality depends on image clarity and model settings.
""")
# 右側 - 結果顯示區
with gr.Column(scale=6, elem_classes="output-panel"):
with gr.Tabs(elem_classes="tabs"):
with gr.Tab("Detection Result"):
result_image = gr.Image(type="pil", label="Detection Result")
# details summary
with gr.Group(elem_classes="result-details-box"):
gr.HTML('<div class="section-heading">Detection Details</div>')
# 文本框設置,讓顯示會更寬
result_text = gr.Textbox(
label=None,
lines=12,
max_lines=15,
elem_classes="wide-result-text",
elem_id="detection-details",
container=False,
scale=2,
min_width=600
)
with gr.Tab("Statistics"):
with gr.Row():
with gr.Column(scale=3, elem_classes="plot-column"):
gr.HTML('<div class="section-heading">Object Distribution</div>')
plot_output = gr.Plot(
label=None,
elem_classes="large-plot-container"
)
# 右側放 JSON 數據比較清晰
with gr.Column(scale=2, elem_classes="stats-column"):
gr.HTML('<div class="section-heading">Detection Statistics</div>')
stats_json = gr.JSON(
label=None, # remove label
elem_classes="enhanced-json-display"
)
detect_btn.click(
fn=process_and_plot,
inputs=[image_input, current_model, confidence, class_filter],
outputs=[result_image, result_text, stats_json, plot_output]
)
# model option
model_dropdown.change(
fn=lambda model: (model, DetectionModel.get_model_description(model)),
inputs=[model_dropdown],
outputs=[current_model, model_info]
)
# each classes link
people_classes = [0] # 人
vehicles_classes = [1, 2, 3, 4, 5, 6, 7, 8] # 各種車輛
animals_classes = list(range(14, 24)) # COCO 中的動物
common_objects = [41, 42, 43, 44, 45, 67, 73, 74, 76] # 常見家居物品
# Linked the quik buttom
people_btn.click(
lambda: [f"{id}: {name}" for id, name in available_classes if id in people_classes],
outputs=class_filter
)
vehicles_btn.click(
lambda: [f"{id}: {name}" for id, name in available_classes if id in vehicles_classes],
outputs=class_filter
)
animals_btn.click(
lambda: [f"{id}: {name}" for id, name in available_classes if id in animals_classes],
outputs=class_filter
)
objects_btn.click(
lambda: [f"{id}: {name}" for id, name in available_classes if id in common_objects],
outputs=class_filter
)
example_images = [
"room_01.jpg",
"street_01.jpg",
"street_02.jpg",
"street_03.jpg"
]
# add example images
gr.Examples(
examples=example_images,
inputs=image_input,
outputs=None,
fn=None,
cache_examples=False,
)
# Footer
gr.HTML("""
<div class="footer">
<p>Powered by YOLOv8 and Ultralytics • Created with Gradio</p>
<p>Model can detect 80 different classes of objects</p>
</div>
""")
return demo
if __name__ == "__main__":
import time
demo = create_interface()
demo.launch()
|