Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,946 Bytes
611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a 5888da9 611206a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, List, Any, Optional, Tuple
class EvaluationMetrics:
"""Class for computing detection metrics, generating statistics and visualization data"""
@staticmethod
def calculate_basic_stats(result: Any) -> Dict:
"""
Calculate basic statistics for a single detection result
Args:
result: Detection result object
Returns:
Dictionary with basic statistics
"""
if result is None:
return {"error": "No detection result provided"}
# Get classes and confidences
classes = result.boxes.cls.cpu().numpy().astype(int)
confidences = result.boxes.conf.cpu().numpy()
names = result.names
# Count by class
class_counts = {}
for cls, conf in zip(classes, confidences):
cls_name = names[int(cls)]
if cls_name not in class_counts:
class_counts[cls_name] = {"count": 0, "total_confidence": 0, "confidences": []}
class_counts[cls_name]["count"] += 1
class_counts[cls_name]["total_confidence"] += float(conf)
class_counts[cls_name]["confidences"].append(float(conf))
# Calculate average confidence
for cls_name, stats in class_counts.items():
if stats["count"] > 0:
stats["average_confidence"] = stats["total_confidence"] / stats["count"]
stats["confidence_std"] = float(np.std(stats["confidences"])) if len(stats["confidences"]) > 1 else 0
stats.pop("total_confidence") # Remove intermediate calculation
# Prepare summary
stats = {
"total_objects": len(classes),
"class_statistics": class_counts,
"average_confidence": float(np.mean(confidences)) if len(confidences) > 0 else 0
}
return stats
@staticmethod
def generate_visualization_data(result: Any, class_colors: Dict = None) -> Dict:
"""
Generate structured data suitable for visualization
Args:
result: Detection result object
class_colors: Dictionary mapping class names to color codes (optional)
Returns:
Dictionary with visualization-ready data
"""
if result is None:
return {"error": "No detection result provided"}
# Get basic stats first
stats = EvaluationMetrics.calculate_basic_stats(result)
# Create visualization-specific data structure
viz_data = {
"total_objects": stats["total_objects"],
"average_confidence": stats["average_confidence"],
"class_data": []
}
# Sort classes by count (descending)
sorted_classes = sorted(
stats["class_statistics"].items(),
key=lambda x: x[1]["count"],
reverse=True
)
# Create class-specific visualization data
for cls_name, cls_stats in sorted_classes:
class_id = -1
# Find the class ID based on the name
for idx, name in result.names.items():
if name == cls_name:
class_id = idx
break
cls_data = {
"name": cls_name,
"class_id": class_id,
"count": cls_stats["count"],
"average_confidence": cls_stats.get("average_confidence", 0),
"confidence_std": cls_stats.get("confidence_std", 0),
"color": class_colors.get(cls_name, "#CCCCCC") if class_colors else "#CCCCCC"
}
viz_data["class_data"].append(cls_data)
return viz_data
@staticmethod
def create_stats_plot(viz_data: Dict, figsize: Tuple[int, int] = (10, 7), max_classes: int = 30) -> plt.Figure:
"""
Create a horizontal bar chart showing detection statistics
Args:
viz_data: Visualization data generated by generate_visualization_data
figsize: Figure size (width, height) in inches
max_classes: Maximum number of classes to display
Returns:
Matplotlib figure object
"""
# Use the enhanced version
return EvaluationMetrics.create_enhanced_stats_plot(viz_data, figsize, max_classes)
@staticmethod
def create_enhanced_stats_plot(viz_data: Dict, figsize: Tuple[int, int] = (10, 7), max_classes: int = 30) -> plt.Figure:
"""
Create an enhanced horizontal bar chart with larger fonts and better styling
Args:
viz_data: Visualization data dictionary
figsize: Figure size (width, height) in inches
max_classes: Maximum number of classes to display
Returns:
Matplotlib figure with enhanced styling
"""
if "error" in viz_data:
# Create empty plot if error
fig, ax = plt.subplots(figsize=figsize)
ax.text(0.5, 0.5, viz_data["error"],
ha='center', va='center', fontsize=14, fontfamily='Arial')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
return fig
if "class_data" not in viz_data or not viz_data["class_data"]:
# Create empty plot if no data
fig, ax = plt.subplots(figsize=figsize)
ax.text(0.5, 0.5, "No detection data available",
ha='center', va='center', fontsize=14, fontfamily='Arial')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
return fig
# Limit to max_classes
class_data = viz_data["class_data"][:max_classes]
# Extract data for plotting
class_names = [item["name"] for item in class_data]
counts = [item["count"] for item in class_data]
colors = [item["color"] for item in class_data]
# Create figure and horizontal bar chart with improved styling
plt.rcParams['font.family'] = 'Arial'
fig, ax = plt.subplots(figsize=figsize)
# Set background color to white
fig.patch.set_facecolor('white')
ax.set_facecolor('white')
y_pos = np.arange(len(class_names))
# Create horizontal bars with class-specific colors
bars = ax.barh(y_pos, counts, color=colors, alpha=0.8, height=0.6)
# Add count values at end of each bar with larger font
for i, bar in enumerate(bars):
width = bar.get_width()
conf = class_data[i]["average_confidence"]
ax.text(width + 0.3, bar.get_y() + bar.get_height()/2,
f"{width:.0f} (conf: {conf:.2f})",
va='center', fontsize=12, fontfamily='Arial')
# Customize axis and labels with larger fonts
ax.set_yticks(y_pos)
ax.set_yticklabels(class_names, fontsize=14, fontfamily='Arial')
ax.invert_yaxis() # Labels read top-to-bottom
ax.set_xlabel('Count', fontsize=14, fontfamily='Arial')
ax.set_title(f'Objects Detected: {viz_data["total_objects"]} Total',
fontsize=16, fontfamily='Arial', fontweight='bold')
# Add grid for better readability
ax.set_axisbelow(True)
ax.grid(axis='x', linestyle='--', alpha=0.7, color='#E5E7EB')
# Increase tick label font size
ax.tick_params(axis='both', which='major', labelsize=12)
# Add detection summary as a text box with improved styling
summary_text = (
f"Total Objects: {viz_data['total_objects']}\n"
f"Average Confidence: {viz_data['average_confidence']:.2f}\n"
f"Unique Classes: {len(viz_data['class_data'])}"
)
plt.figtext(0.02, 0.02, summary_text, fontsize=12, fontfamily='Arial',
bbox=dict(facecolor='white', alpha=0.9, boxstyle='round,pad=0.5',
edgecolor='#E5E7EB'))
plt.tight_layout()
return fig
@staticmethod
def format_detection_summary(viz_data: Dict) -> str:
if "error" in viz_data:
return viz_data["error"]
if "total_objects" not in viz_data:
return "No detection data available."
total_objects = viz_data["total_objects"]
avg_confidence = viz_data["average_confidence"]
lines = [
f"Detected {total_objects} objects.",
f"Average confidence: {avg_confidence:.2f}",
"Objects by class:"
]
if "class_data" in viz_data and viz_data["class_data"]:
for item in viz_data["class_data"]:
count = item['count']
item_text = "item" if count == 1 else "items"
lines.append(f"• {item['name']}: {count} {item_text} (Confidence: {item['average_confidence']:.2f})")
else:
lines.append("No class information available.")
return "\n".join(lines)
@staticmethod
def calculate_distance_metrics(result: Any) -> Dict:
"""
Calculate distance-related metrics for detected objects
Args:
result: Detection result object
Returns:
Dictionary with distance metrics
"""
if result is None:
return {"error": "No detection result provided"}
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy().astype(int)
names = result.names
# Initialize metrics
metrics = {
"proximity": {}, # Classes that appear close to each other
"spatial_distribution": {}, # Distribution across the image
"size_distribution": {} # Size distribution of objects
}
# Calculate image dimensions (assuming normalized coordinates or extract from result)
img_width, img_height = 1, 1
if hasattr(result, "orig_shape"):
img_height, img_width = result.orig_shape[:2]
# Calculate bounding box areas and centers
areas = []
centers = []
class_names = []
for box, cls in zip(boxes, classes):
x1, y1, x2, y2 = box
width, height = x2 - x1, y2 - y1
area = width * height
center_x, center_y = (x1 + x2) / 2, (y1 + y2) / 2
areas.append(area)
centers.append((center_x, center_y))
class_names.append(names[int(cls)])
# Calculate spatial distribution
if centers:
x_coords = [c[0] for c in centers]
y_coords = [c[1] for c in centers]
metrics["spatial_distribution"] = {
"x_mean": float(np.mean(x_coords)) / img_width,
"y_mean": float(np.mean(y_coords)) / img_height,
"x_std": float(np.std(x_coords)) / img_width,
"y_std": float(np.std(y_coords)) / img_height
}
# Calculate size distribution
if areas:
metrics["size_distribution"] = {
"mean_area": float(np.mean(areas)) / (img_width * img_height),
"std_area": float(np.std(areas)) / (img_width * img_height),
"min_area": float(np.min(areas)) / (img_width * img_height),
"max_area": float(np.max(areas)) / (img_width * img_height)
}
# Calculate proximity between different classes
class_centers = {}
for cls_name, center in zip(class_names, centers):
if cls_name not in class_centers:
class_centers[cls_name] = []
class_centers[cls_name].append(center)
# Find classes that appear close to each other
proximity_pairs = []
for i, cls1 in enumerate(class_centers.keys()):
for j, cls2 in enumerate(class_centers.keys()):
if i >= j: # Avoid duplicate pairs and self-comparison
continue
# Calculate minimum distance between any two objects of these classes
min_distance = float('inf')
for center1 in class_centers[cls1]:
for center2 in class_centers[cls2]:
dist = np.sqrt((center1[0] - center2[0])**2 + (center1[1] - center2[1])**2)
min_distance = min(min_distance, dist)
# Normalize by image diagonal
img_diagonal = np.sqrt(img_width**2 + img_height**2)
norm_distance = min_distance / img_diagonal
proximity_pairs.append({
"class1": cls1,
"class2": cls2,
"distance": float(norm_distance)
})
# Sort by distance and keep the closest pairs
proximity_pairs.sort(key=lambda x: x["distance"])
metrics["proximity"] = proximity_pairs[:5] # Keep top 5 closest pairs
return metrics
|