import os import gradio as gr import pandas as pd import requests from dotenv import load_dotenv from langchain_core.messages import HumanMessage from agent import build_graph load_dotenv() DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" cached_answers = [] class ChatAgent: def __init__(self): print("ChatAgent initialized with Qwen LangGraph workflow.") self.graph = build_graph("huggingface") # Uses Qwen endpoint def __call__(self, question: str) -> str: print(f"Processing question: {question[:60]}...") messages = [HumanMessage(content=question)] results = self.graph.invoke({"messages": messages}) answer = results['messages'][-1].content.strip() return answer def run_agent_only(profile: gr.OAuthProfile | None): global cached_answers cached_answers = [] results_log = [] if not profile: return "Please login first.", None try: agent = ChatAgent() except Exception as e: return f"Agent Init Error: {e}", None try: response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15) questions_data = response.json() except Exception as e: return f"Error fetching questions: {e}", None for item in questions_data: task_id = item.get("task_id") question = item.get("question") file_name = item.get("file_name") if not task_id or question is None: continue try: user_message = question if file_name: user_message += f"\n\nFile to use: {file_name}" answer = agent(user_message) cached_answers.append({"task_id": task_id, "submitted_answer": answer}) results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer}) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question, "Submitted Answer": f"AGENT ERROR: {e}" }) return "Agent finished. Now click 'Submit Cached Answers'", pd.DataFrame(results_log) def submit_cached_answers(profile: gr.OAuthProfile | None): global cached_answers if not profile or not cached_answers: return "No cached answers to submit. Run the agent first.", None space_id = os.getenv("SPACE_ID") username = profile.username agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" payload = { "username": username, "agent_code": agent_code, "answers": cached_answers } try: response = requests.post(f"{DEFAULT_API_URL}/submit", json=payload, timeout=60) result = response.json() final_status = ( f"Submission Successful!\nUser: {result.get('username')}\n" f"Score: {result.get('score', 'N/A')}% " f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')})" ) return final_status, None except Exception as e: return f"Submission failed: {e}", None # --- Gradio UI --- with gr.Blocks() as demo: gr.Markdown("# LangGraph ChatAgent Evaluation") gr.Markdown("Run the agent on all tasks, then submit for scoring.") gr.LoginButton() run_button = gr.Button("\U0001F9E0 Run Agent") submit_button = gr.Button("\U0001F4E4 Submit Answers") status_box = gr.Textbox(label="Status", lines=3) table = gr.DataFrame(label="Results", wrap=True) run_button.click(fn=run_agent_only, outputs=[status_box, table]) submit_button.click(fn=submit_cached_answers, outputs=[status_box, table]) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL: https://{space_host_startup}.hf.space") else: print("ℹ️ No SPACE_HOST found.") if space_id_startup: print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") else: print("ℹ️ No SPACE_ID found.") print("Launching Gradio Interface...") demo.launch(debug=True, share=False)