"""LangGraph Agent""" import os from langchain_core.messages import HumanMessage, SystemMessage, AIMessage from langchain_core.tools import tool from langchain_core.runnables.graph import StateGraph, START from langchain_core.runnables.history import MessagesState from langchain_core.runnables.utils import ToolNode, tools_condition from langchain_community.utilities import WikipediaLoader, ArxivLoader from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import SupabaseVectorStore from langchain_groq import ChatGroq from langchain_google_genai import ChatGoogleGenerativeAI from langchain_community.chat_models import ChatHuggingFace from langchain_community.llms import HuggingFaceEndpoint from supabase import create_client, Client from dotenv import load_dotenv load_dotenv() # === Tools === @tool def multiply(a: int, b: int) -> int: """Multiply two integers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two integers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract b from a.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide a by b.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Return a modulo b.""" return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() return "\n\n---\n\n".join([doc.page_content for doc in search_docs]) @tool def web_search(query: str) -> str: """Search the web for a query.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) return "\n\n---\n\n".join([doc.page_content for doc in search_docs]) @tool def arvix_search(query: str) -> str: """Search Arxiv for a query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs]) # === System Prompt === with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) # === Embeddings and Vector Store === embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")) vector_store = SupabaseVectorStore( client=supabase, embedding=embeddings, table_name="Vector_Test", query_name="match_documents_langchain", ) # === Tools === tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search] # === Build Graph === def build_graph(provider: str = "groq"): if provider == "google": llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "groq": llm = ChatGroq(model="qwen-qwq-32b", temperature=0) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0, ) ) else: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): response = llm_with_tools.invoke(state["messages"]) content = response.content.strip() if "FINAL ANSWER:" in content: content = content.split("FINAL ANSWER:")[-1].strip() return {"messages": [AIMessage(content=content)]} def retriever(state: MessagesState): similar_question = vector_store.similarity_search(state["messages"][0].content) example_msg = HumanMessage(content=f"Reference: {similar_question[0].page_content}") return {"messages": [sys_msg] + state["messages"] + [example_msg]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() if __name__ == "__main__": question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" graph = build_graph("groq") messages = [HumanMessage(content=question)] messages = graph.invoke({"messages": messages}) for m in messages["messages"]: m.pretty_print()