|
import os |
|
import gradio as gr |
|
import pandas as pd |
|
import requests |
|
import subprocess |
|
import json |
|
import csv |
|
import openpyxl |
|
import whisper |
|
from typing import Optional |
|
from bs4 import BeautifulSoup |
|
from duckduckgo_search import DDGS |
|
from smolagents import CodeAgent, tool |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
class ClaudeServerModel: |
|
def __init__(self, api_key: str, model_id: str = "claude-3-opus-20240229", temperature: float = 0.0): |
|
self.api_key = api_key |
|
self.model_id = model_id |
|
self.temperature = temperature |
|
|
|
def complete(self, prompt: str) -> str: |
|
headers = { |
|
"x-api-key": self.api_key, |
|
"anthropic-version": "2023-06-01", |
|
"content-type": "application/json" |
|
} |
|
body = { |
|
"model": self.model_id, |
|
"max_tokens": 1024, |
|
"temperature": self.temperature, |
|
"messages": [ |
|
{"role": "user", "content": prompt} |
|
] |
|
} |
|
response = requests.post("https://api.anthropic.com/v1/messages", headers=headers, json=body) |
|
response.raise_for_status() |
|
return response.json()["content"][0]["text"].strip() |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
def download_file(file_name: str) -> None: |
|
if not os.path.exists(file_name): |
|
url = f"{DEFAULT_API_URL}/files/{file_name.split('.')[0]}" |
|
r = requests.get(url) |
|
with open(file_name, "wb") as f: |
|
f.write(r.content) |
|
|
|
@tool |
|
def open_file_as_text(file_name: str, filetype: Optional[str] = "txt") -> str: |
|
""" |
|
Opens and reads a file of the given type (txt, json, csv, xlsx, mp3). |
|
Returns its content as readable text or transcription for audio files. |
|
""" |
|
download_file(file_name) |
|
try: |
|
if filetype == "txt": |
|
with open(file_name, "r", encoding="utf-8") as f: |
|
return f.read() |
|
elif filetype == "json": |
|
with open(file_name, "r", encoding="utf-8") as f: |
|
data = json.load(f) |
|
return json.dumps(data, indent=2) |
|
elif filetype == "csv": |
|
with open(file_name, "r", encoding="utf-8") as f: |
|
reader = csv.reader(f) |
|
rows = list(reader) |
|
return "\n".join([", ".join(row) for row in rows]) |
|
elif filetype == "xlsx": |
|
wb = openpyxl.load_workbook(file_name, data_only=True) |
|
sheet = wb.active |
|
content = [] |
|
for row in sheet.iter_rows(values_only=True): |
|
content.append(", ".join(str(cell) if cell is not None else "" for cell in row)) |
|
return "\n".join(content) |
|
elif filetype == "mp3": |
|
w = whisper.load_model("base") |
|
res = w.transcribe(file_name) |
|
return res["text"] |
|
else: |
|
return f"Unsupported filetype '{filetype}'." |
|
except Exception as e: |
|
return f"Error opening file '{file_name}': {str(e)}" |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
""" |
|
Performs a web search using DuckDuckGo and returns the top results. |
|
|
|
Args: |
|
query: Search query string. |
|
|
|
Returns: |
|
Top search results formatted as title, snippet, and URL. |
|
""" |
|
try: |
|
with DDGS() as ddgs: |
|
results = ddgs.text(query, max_results=3) |
|
if not results: |
|
return "No results found." |
|
return "\n\n".join([f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['href']}" for r in results]) |
|
except Exception as e: |
|
return f"Error during search: {str(e)}" |
|
|
|
@tool |
|
def read_wikipedia_page(url: str) -> str: |
|
""" |
|
Reads and extracts clean text content from a Wikipedia page. |
|
|
|
Args: |
|
url: Full URL to the Wikipedia page. |
|
|
|
Returns: |
|
Sectioned and readable content from the page, including paragraphs, lists, and tables. |
|
""" |
|
headers = {"User-Agent": "Mozilla/5.0"} |
|
resp = requests.get(url, headers=headers, timeout=10) |
|
resp.raise_for_status() |
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
content_div = soup.find('div', id='mw-content-text') |
|
parts = [] |
|
for elem in content_div.find_all(['h2', 'h3', 'p', 'ul', 'ol', 'table']): |
|
if elem.name in ['h2', 'h3']: |
|
parts.append("\n\n" + elem.get_text(strip=True) + "\n") |
|
elif elem.name in ['p', 'ul', 'ol']: |
|
parts.append(elem.get_text(strip=True)) |
|
elif elem.name == 'table': |
|
parts.append(parse_wikipedia_table(elem)) |
|
return "\n".join(parts) |
|
|
|
@tool |
|
def smart_paginate_around_query(full_text: str, query: str) -> list: |
|
""" |
|
Splits full text into focused windows surrounding the query keyword. |
|
|
|
Args: |
|
full_text: The large text content to paginate. |
|
query: Keyword or phrase to center each window on. |
|
|
|
Returns: |
|
List of substrings centered around the query within the original text. |
|
""" |
|
before_chars = 1000 |
|
after_chars = 3000 |
|
q = query.lower() |
|
text_lower = full_text.lower() |
|
pages = [] |
|
start = 0 |
|
while True: |
|
idx = text_lower.find(q, start) |
|
if idx == -1: |
|
break |
|
s = max(0, idx - before_chars) |
|
e = min(len(full_text), idx + len(q) + after_chars) |
|
pages.append(full_text[s:e]) |
|
start = e |
|
return pages |
|
|
|
@tool |
|
def reverse_sentence(text: str) -> str: |
|
""" |
|
Reverses the input text string. |
|
|
|
Args: |
|
text: A string to reverse. |
|
|
|
Returns: |
|
Reversed string. |
|
""" |
|
return text[::-1] |
|
|
|
@tool |
|
def run_python_code(file_name: str) -> str: |
|
""" |
|
Executes a Python script and returns the output. |
|
|
|
Args: |
|
file_name: Name of the Python file to execute. |
|
|
|
Returns: |
|
Printed standard output or error message from the script. |
|
""" |
|
download_file(file_name) |
|
try: |
|
result = subprocess.run(["python", file_name], capture_output=True, text=True, timeout=10) |
|
if result.returncode != 0: |
|
return f"Error: {result.stderr.strip()}" |
|
return result.stdout.strip() |
|
except Exception as e: |
|
return f"Execution failed: {e}" |
|
|
|
|
|
tools = [ |
|
open_file_as_text, |
|
web_search, |
|
read_wikipedia_page, |
|
smart_paginate_around_query, |
|
reverse_sentence, |
|
run_python_code |
|
] |
|
|
|
model = ClaudeServerModel( |
|
api_key=os.getenv("CLAUDE_API_KEY"), |
|
model_id="claude-3-opus-20240229" |
|
) |
|
|
|
agent = CodeAgent( |
|
model=model, |
|
tools=tools, |
|
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"] |
|
) |
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = CodeAgent( |
|
model=model, |
|
tools=tools, |
|
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", |
|
"urllib"] |
|
) |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
file_name = item.get("file_name") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
full_prompt = f"""You are a highly precise answering agent designed to meet the GAIA benchmark's exact-match standards. |
|
|
|
When presented with a question: |
|
- Use tools appropriately and deliberately. Do not make assumptions or guess answers. |
|
- Use `web_search` to find external sources only if necessary. If the results include short snippets, you MUST follow the link and read the full content using `read_wikipedia_page`. |
|
- You have access to `read_wikipedia_page` ONLY — no other external browsing is allowed. |
|
- When reading long text, ALWAYS use `smart_paginate_around_query` to extract focused context. Use 1-3 general keywords (not full questions) as the query. |
|
- If the task involves reversing words, letters, or phrases, use the `reverse_sentence` tool. Never reverse text manually. |
|
- For any file-based task (e.g., .mp3, .csv, .json, .xlsx), use the `file_name` provided in the metadata — not a name mentioned in the question text. |
|
- Format lists with a single space after each comma. |
|
- If asked for a number, return digits only — no commas, currency signs, or symbols (e.g., %, $, etc.). |
|
- If asked for a string, do not include articles (e.g., "the", "a") or abbreviations unless required. Spell out numbers in digit form unless stated otherwise. |
|
- If asked for a comma-separated list, apply the correct formatting per element type (string or number). |
|
Once you have the exact answer: |
|
- Immediately call `final_answer("your_answer")` and stop execution. |
|
- Never retry, rerun, or generate multiple answers. |
|
- Do not include reasoning, steps, thoughts, or commentary — just the final value. |
|
Example: |
|
If asked: "What is the capital of France?" |
|
Your answer logic should follow: |
|
```py |
|
print("Paris") |
|
```<end_code> |
|
Based on the above guidelines, answer the following question: |
|
--begin of question-- |
|
{question_text} |
|
--end of question-- |
|
If the questions mentions the need to use a file, use the following `file_name` value as the `file_name` parameter in any function calls: |
|
file_name: {file_name}""" |
|
submitted_answer = agent.run(full_prompt) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |