File size: 16,490 Bytes
10e9b7d
 
3c4371f
fc7015b
 
 
 
 
 
 
 
 
426c595
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
31243f4
fc7015b
b5cc0f9
fc7015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc54712
fc7015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8e3872
fc7015b
 
 
 
 
 
 
 
 
 
a992787
fc7015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a992787
fc7015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a992787
fc7015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a992787
fc7015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a992787
4021bf3
b90251f
31243f4
 
 
 
fc7015b
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
fc7015b
31243f4
fc7015b
 
 
 
 
 
31243f4
3c4371f
31243f4
fc7015b
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
fc7015b
31243f4
 
 
 
fc7015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d65c66
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
fc7015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
 
fc7015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import os
import gradio as gr
import pandas as pd
import requests
import subprocess
import json
import csv
import openpyxl
import whisper
from typing import Optional
from bs4 import BeautifulSoup
from duckduckgo_search import DDGS
from smolagents import CodeAgent, tool

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
class ClaudeServerModel:
    def __init__(self, api_key: str, model_id: str = "claude-3-opus-20240229", temperature: float = 0.0):
        self.api_key = api_key
        self.model_id = model_id
        self.temperature = temperature

    def complete(self, prompt: str) -> str:
        headers = {
            "x-api-key": self.api_key,
            "anthropic-version": "2023-06-01",
            "content-type": "application/json"
        }
        body = {
            "model": self.model_id,
            "max_tokens": 1024,
            "temperature": self.temperature,
            "messages": [
                {"role": "user", "content": prompt}
            ]
        }
        response = requests.post("https://api.anthropic.com/v1/messages", headers=headers, json=body)
        response.raise_for_status()
        return response.json()["content"][0]["text"].strip()

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

def download_file(file_name: str) -> None:
    if not os.path.exists(file_name):
        url = f"{DEFAULT_API_URL}/files/{file_name.split('.')[0]}"
        r = requests.get(url)
        with open(file_name, "wb") as f:
            f.write(r.content)

@tool
def open_file_as_text(file_name: str, filetype: Optional[str] = "txt") -> str:
    download_file(file_name)
    try:
        if filetype == "txt":
            with open(file_name, "r", encoding="utf-8") as f:
                return f.read()
        elif filetype == "json":
            with open(file_name, "r", encoding="utf-8") as f:
                data = json.load(f)
            return json.dumps(data, indent=2)
        elif filetype == "csv":
            with open(file_name, "r", encoding="utf-8") as f:
                reader = csv.reader(f)
                rows = list(reader)
            return "\n".join([", ".join(row) for row in rows])
        elif filetype == "xlsx":
            wb = openpyxl.load_workbook(file_name, data_only=True)
            sheet = wb.active
            content = []
            for row in sheet.iter_rows(values_only=True):
                content.append(", ".join(str(cell) if cell is not None else "" for cell in row))
            return "\n".join(content)
        elif filetype == "mp3":
            w = whisper.load_model("base")
            res = w.transcribe(file_name)
            return res["text"]
        else:
            return f"Unsupported filetype '{filetype}'."
    except Exception as e:
        return f"Error opening file '{file_name}': {str(e)}"

@tool
def web_search(query: str) -> str:
    try:
        with DDGS() as ddgs:
            results = ddgs.text(query, max_results=3)
            if not results:
                return "No results found."
            return "\n\n".join([f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['href']}" for r in results])
    except Exception as e:
        return f"Error during search: {str(e)}"

def parse_wikipedia_table(table) -> str:
    rows = []
    headers = []
    thead = table.find('thead')
    if thead:
        for th in thead.find_all('th'):
            headers.append(th.get_text(separator=" ", strip=True))
        if headers:
            rows.append(" | ".join(headers))
    tbody = table.find('tbody') or table
    for tr in tbody.find_all('tr'):
        cells = tr.find_all(['th', 'td'])
        cell_texts = [cell.get_text(separator=" ", strip=True) for cell in cells if cell]
        if cell_texts:
            rows.append(" | ".join(cell_texts))
    return "\n".join(rows)

@tool
def read_wikipedia_page(url: str) -> str:
    headers = {"User-Agent": "Mozilla/5.0"}
    resp = requests.get(url, headers=headers, timeout=10)
    resp.raise_for_status()
    soup = BeautifulSoup(resp.text, "html.parser")
    content_div = soup.find('div', id='mw-content-text')
    parts = []
    for elem in content_div.find_all(['h2', 'h3', 'p', 'ul', 'ol', 'table']):
        if elem.name in ['h2', 'h3']:
            parts.append("\n\n" + elem.get_text(strip=True) + "\n")
        elif elem.name in ['p', 'ul', 'ol']:
            parts.append(elem.get_text(strip=True))
        elif elem.name == 'table':
            parts.append(parse_wikipedia_table(elem))
    return "\n".join(parts)

@tool
def smart_paginate_around_query(full_text: str, query: str) -> list:
    before_chars = 1000
    after_chars = 3000
    q = query.lower()
    text_lower = full_text.lower()
    pages = []
    start = 0
    while True:
        idx = text_lower.find(q, start)
        if idx == -1:
            break
        s = max(0, idx - before_chars)
        e = min(len(full_text), idx + len(q) + after_chars)
        pages.append(full_text[s:e])
        start = e
    return pages

@tool
def reverse_sentence(text: str) -> str:
    return text[::-1]

@tool
def run_python_code(file_name: str) -> str:
    download_file(file_name)
    try:
        result = subprocess.run(["python", file_name], capture_output=True, text=True, timeout=10)
        if result.returncode != 0:
            return f"Error: {result.stderr.strip()}"
        return result.stdout.strip()
    except Exception as e:
        return f"Execution failed: {e}"

# Agent Setup
tools = [
    open_file_as_text,
    web_search,
    read_wikipedia_page,
    smart_paginate_around_query,
    reverse_sentence,
    run_python_code
]

model = ClaudeServerModel(
    api_key=os.getenv("CLAUDE_API_KEY"),
    model_id="claude-3-opus-20240229"
)

agent = CodeAgent(
    model=model,
    tools=tools,
    additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"]
)

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # Determine HF Space Runtime URL and Repo URL
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Instantiate Agent ( modify this part to create your agent)
    try:
        agent = CodeAgent(
            model=model,
            tools=tools,
            additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv",
                                           "urllib"]
        )
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase (useful for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        file_name = item.get("file_name")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            full_prompt = f"""You are a highly precise answering agent designed to meet the GAIA benchmark's exact-match standards.

When presented with a question:
- Use tools appropriately and deliberately. Do not make assumptions or guess answers.
- Use `web_search` to find external sources only if necessary. If the results include short snippets, you MUST follow the link and read the full content using `read_wikipedia_page`.
- You have access to `read_wikipedia_page` ONLY — no other external browsing is allowed.
- When reading long text, ALWAYS use `smart_paginate_around_query` to extract focused context. Use 1-3 general keywords (not full questions) as the query.
- If the task involves reversing words, letters, or phrases, use the `reverse_sentence` tool. Never reverse text manually.
- For any file-based task (e.g., .mp3, .csv, .json, .xlsx), use the `file_name` provided in the metadata — not a name mentioned in the question text.
- Format lists with a single space after each comma.
- If asked for a number, return digits only — no commas, currency signs, or symbols (e.g., %, $, etc.).
- If asked for a string, do not include articles (e.g., "the", "a") or abbreviations unless required. Spell out numbers in digit form unless stated otherwise.
- If asked for a comma-separated list, apply the correct formatting per element type (string or number).
Once you have the exact answer:
- Immediately call `final_answer("your_answer")` and stop execution.
- Never retry, rerun, or generate multiple answers.
- Do not include reasoning, steps, thoughts, or commentary — just the final value.
Example:
If asked: "What is the capital of France?"
Your answer logic should follow:
```py
print("Paris")
```<end_code>
Based on the above guidelines, answer the following question:
--begin of question--
{question_text}
--end of question--
If the questions mentions the need to use a file, use the following `file_name` value as the `file_name` parameter in any function calls:
file_name: {file_name}"""
            submitted_answer = agent.run(full_prompt)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)