Spaces:
Running
Running
Add OCR extraction app using TrOCR
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
+
from pdf2image import convert_from_path
|
4 |
+
import pytesseract
|
5 |
+
|
6 |
+
# Load TrOCR Model from Hugging Face
|
7 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
9 |
+
|
10 |
+
# Function to extract text from PDF
|
11 |
+
def extract_text_from_pdf(pdf_path):
|
12 |
+
images = convert_from_path(pdf_path)
|
13 |
+
extracted_text = []
|
14 |
+
|
15 |
+
for img in images:
|
16 |
+
# Convert image to text using TrOCR
|
17 |
+
pixel_values = processor(images=img, return_tensors="pt").pixel_values
|
18 |
+
generated_ids = model.generate(pixel_values)
|
19 |
+
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
20 |
+
|
21 |
+
# Fallback to Tesseract if TrOCR fails
|
22 |
+
if not text.strip():
|
23 |
+
text = pytesseract.image_to_string(img)
|
24 |
+
|
25 |
+
extracted_text.append(text)
|
26 |
+
|
27 |
+
return "\n".join(extracted_text)
|
28 |
+
|
29 |
+
# Gradio Interface
|
30 |
+
def ocr_pipeline(pdf_file):
|
31 |
+
pdf_path = pdf_file.name
|
32 |
+
extracted_text = extract_text_from_pdf(pdf_path)
|
33 |
+
return extracted_text
|
34 |
+
|
35 |
+
iface = gr.Interface(
|
36 |
+
fn=ocr_pipeline,
|
37 |
+
inputs=gr.File(label="Upload PDF"),
|
38 |
+
outputs="text",
|
39 |
+
title="PDF Text Extraction using TrOCR"
|
40 |
+
)
|
41 |
+
|
42 |
+
# Run the Gradio App
|
43 |
+
if __name__ == "__main__":
|
44 |
+
iface.launch()
|
45 |
+
|