Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import MusicGenForConditionalGeneration, MusicGenProcessor
|
3 |
import torch
|
|
|
4 |
|
5 |
# Load the MusicGen model and processor
|
6 |
model_name = "facebook/musicgen-small"
|
@@ -14,11 +15,14 @@ def generate_audio(text):
|
|
14 |
|
15 |
# Generate audio (samples)
|
16 |
with torch.no_grad():
|
17 |
-
generated_audio = model.
|
18 |
|
19 |
-
#
|
20 |
audio_path = "/tmp/generated_audio.wav"
|
21 |
-
generated_audio.
|
|
|
|
|
|
|
22 |
|
23 |
return audio_path
|
24 |
|
@@ -32,3 +36,4 @@ iface = gr.Interface(
|
|
32 |
)
|
33 |
|
34 |
iface.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import MusicGenForConditionalGeneration, MusicGenProcessor
|
3 |
import torch
|
4 |
+
import soundfile as sf # For saving audio as WAV
|
5 |
|
6 |
# Load the MusicGen model and processor
|
7 |
model_name = "facebook/musicgen-small"
|
|
|
15 |
|
16 |
# Generate audio (samples)
|
17 |
with torch.no_grad():
|
18 |
+
generated_audio = model.generate(**inputs)
|
19 |
|
20 |
+
# Convert tensor to numpy and save as a WAV file
|
21 |
audio_path = "/tmp/generated_audio.wav"
|
22 |
+
audio_data = generated_audio[0].cpu().numpy() # Access the first sample
|
23 |
+
|
24 |
+
# Save the generated audio
|
25 |
+
sf.write(audio_path, audio_data, 16000) # Assuming a sample rate of 16kHz
|
26 |
|
27 |
return audio_path
|
28 |
|
|
|
36 |
)
|
37 |
|
38 |
iface.launch()
|
39 |
+
|