Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import json | |
import os | |
import re | |
from PyPDF2 import PdfReader | |
from collections import defaultdict | |
from typing import Dict, List, Optional, Tuple, Union | |
import html | |
from pathlib import Path | |
import fitz # PyMuPDF for better PDF text extraction | |
import pytesseract | |
from PIL import Image | |
import io | |
import secrets | |
import string | |
from huggingface_hub import HfApi, HfFolder | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import time | |
import logging | |
import asyncio | |
# ========== CONFIGURATION ========== | |
PROFILES_DIR = "student_profiles" | |
ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"] | |
MAX_FILE_SIZE_MB = 5 | |
MIN_AGE = 5 | |
MAX_AGE = 120 | |
SESSION_TOKEN_LENGTH = 32 | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# Initialize logging | |
logging.basicConfig(filename='app.log', level=logging.INFO) | |
# Model configuration | |
MODEL_CHOICES = { | |
"TinyLlama (Fastest)": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
"Phi-2 (Balanced)": "microsoft/phi-2", | |
"DeepSeek-V3 (Most Powerful)": "deepseek-ai/DeepSeek-V3" | |
} | |
DEFAULT_MODEL = "TinyLlama (Fastest)" | |
# Initialize Hugging Face API | |
if HF_TOKEN: | |
hf_api = HfApi(token=HF_TOKEN) | |
HfFolder.save_token(HF_TOKEN) | |
# ========== OPTIMIZED MODEL LOADING ========== | |
class ModelLoader: | |
def __init__(self): | |
self.model = None | |
self.tokenizer = None | |
self.loaded = False | |
self.loading = False | |
self.error = None | |
self.current_model = None | |
def load_model(self, model_name, progress=gr.Progress()): | |
"""Lazy load the model with progress feedback""" | |
if self.loaded and self.current_model == model_name: | |
return self.model, self.tokenizer | |
self.loading = True | |
self.error = None | |
try: | |
progress(0.1, desc="Initializing...") | |
# Clear previous model if any | |
if self.model: | |
del self.model | |
del self.tokenizer | |
torch.cuda.empty_cache() | |
time.sleep(2) # Allow CUDA cleanup | |
# Load with optimized settings | |
model_kwargs = { | |
"trust_remote_code": True, | |
"torch_dtype": torch.float16, | |
"device_map": "auto", | |
"low_cpu_mem_usage": True | |
} | |
if "TinyLlama" in model_name: | |
model_kwargs["attn_implementation"] = "flash_attention_2" | |
progress(0.3, desc="Loading tokenizer...") | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_CHOICES[model_name], | |
trust_remote_code=True | |
) | |
progress(0.6, desc="Loading model...") | |
self.model = AutoModelForCausalLM.from_pretrained( | |
MODEL_CHOICES[model_name], | |
**model_kwargs | |
) | |
# Verify model responsiveness | |
progress(0.8, desc="Verifying model...") | |
test_input = self.tokenizer("Test", return_tensors="pt").to(self.model.device) | |
_ = self.model.generate(**test_input, max_new_tokens=1) | |
self.model.eval() # Disable dropout | |
progress(0.9, desc="Finalizing...") | |
self.loaded = True | |
self.current_model = model_name | |
return self.model, self.tokenizer | |
except torch.cuda.OutOfMemoryError: | |
self.error = "Out of GPU memory. Try a smaller model." | |
logging.error(self.error) | |
return None, None | |
except Exception as e: | |
self.error = str(e) | |
logging.error(f"Model loading error: {self.error}") | |
return None, None | |
finally: | |
self.loading = False | |
# Initialize model loader | |
model_loader = ModelLoader() | |
# ========== UTILITY FUNCTIONS ========== | |
def generate_session_token() -> str: | |
"""Generate a random session token for user identification.""" | |
alphabet = string.ascii_letters + string.digits | |
return ''.join(secrets.choice(alphabet) for _ in range(SESSION_TOKEN_LENGTH)) | |
def sanitize_input(text: str) -> str: | |
"""Sanitize user input to prevent XSS and injection attacks.""" | |
return html.escape(text.strip()) | |
def validate_name(name: str) -> str: | |
"""Validate name input.""" | |
name = name.strip() | |
if not name: | |
raise gr.Error("Name cannot be empty") | |
if len(name) > 100: | |
raise gr.Error("Name is too long (max 100 characters)") | |
if any(c.isdigit() for c in name): | |
raise gr.Error("Name cannot contain numbers") | |
return name | |
def validate_age(age: Union[int, float, str]) -> int: | |
"""Validate and convert age input.""" | |
try: | |
age_int = int(age) | |
if not MIN_AGE <= age_int <= MAX_AGE: | |
raise gr.Error(f"Age must be between {MIN_AGE} and {MAX_AGE}") | |
return age_int | |
except (ValueError, TypeError): | |
raise gr.Error("Please enter a valid age number") | |
def validate_file(file_obj) -> None: | |
"""Validate uploaded file.""" | |
if not file_obj: | |
raise ValueError("No file uploaded") | |
file_ext = os.path.splitext(file_obj.name)[1].lower() | |
if file_ext not in ALLOWED_FILE_TYPES: | |
raise gr.Error(f"Invalid file type. Allowed: {', '.join(ALLOWED_FILE_TYPES)}") | |
file_size = os.path.getsize(file_obj.name) / (1024 * 1024) # MB | |
if file_size > MAX_FILE_SIZE_MB: | |
raise gr.Error(f"File too large. Max size: {MAX_FILE_SIZE_MB}MB") | |
# ========== TEXT EXTRACTION FUNCTIONS ========== | |
def extract_text_from_file(file_path: str, file_ext: str) -> str: | |
"""Enhanced text extraction with better error handling and fallbacks.""" | |
text = "" | |
try: | |
if file_ext == '.pdf': | |
# First try PyMuPDF for better text extraction | |
try: | |
doc = fitz.open(file_path) | |
for page in doc: | |
text += page.get_text("text") + '\n' | |
if not text.strip(): | |
raise ValueError("PyMuPDF returned empty text") | |
except Exception as e: | |
logging.warning(f"PyMuPDF failed: {str(e)}. Trying OCR fallback...") | |
text = extract_text_from_pdf_with_ocr(file_path) | |
elif file_ext in ['.png', '.jpg', '.jpeg']: | |
text = extract_text_with_ocr(file_path) | |
# Clean up the extracted text | |
text = clean_extracted_text(text) | |
if not text.strip(): | |
raise ValueError("No text could be extracted from the file") | |
return text | |
except Exception as e: | |
logging.error(f"Text extraction error: {str(e)}") | |
raise gr.Error(f"Text extraction error: {str(e)}\nTips: Use high-quality images/PDFs with clear text.") | |
def extract_text_from_pdf_with_ocr(file_path: str) -> str: | |
"""Fallback PDF text extraction using OCR.""" | |
text = "" | |
try: | |
doc = fitz.open(file_path) | |
for page in doc: | |
pix = page.get_pixmap() | |
img = Image.open(io.BytesIO(pix.tobytes())) | |
# Preprocess image for better OCR | |
img = img.convert('L') # Grayscale | |
img = img.point(lambda x: 0 if x < 128 else 255) # Binarize | |
text += pytesseract.image_to_string(img, config='--psm 6 --oem 3') + '\n' | |
except Exception as e: | |
raise ValueError(f"PDF OCR failed: {str(e)}") | |
return text | |
def extract_text_with_ocr(file_path: str) -> str: | |
"""Extract text from image files using OCR with preprocessing.""" | |
try: | |
image = Image.open(file_path) | |
# Enhanced preprocessing | |
image = image.convert('L') # Convert to grayscale | |
image = image.point(lambda x: 0 if x < 128 else 255, '1') # Thresholding | |
# Custom Tesseract configuration | |
custom_config = r'--oem 3 --psm 6' | |
text = pytesseract.image_to_string(image, config=custom_config) | |
return text | |
except Exception as e: | |
raise ValueError(f"OCR processing failed: {str(e)}") | |
def clean_extracted_text(text: str) -> str: | |
"""Clean and normalize the extracted text.""" | |
# Remove multiple spaces and newlines | |
text = re.sub(r'\s+', ' ', text).strip() | |
# Fix common OCR errors | |
replacements = { | |
'|': 'I', | |
'‘': "'", | |
'’': "'", | |
'“': '"', | |
'”': '"', | |
'fi': 'fi', | |
'fl': 'fl' | |
} | |
for wrong, right in replacements.items(): | |
text = text.replace(wrong, right) | |
return text | |
def remove_sensitive_info(text: str) -> str: | |
"""Remove potentially sensitive information from transcript text.""" | |
# Remove social security numbers | |
text = re.sub(r'\b\d{3}-\d{2}-\d{4}\b', '[REDACTED]', text) | |
# Remove student IDs (assuming 6-9 digit numbers) | |
text = re.sub(r'\b\d{6,9}\b', '[ID]', text) | |
# Remove email addresses | |
text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]', text) | |
return text | |
# ========== TRANSCRIPT PARSING ========== | |
class TranscriptParser: | |
def __init__(self): | |
self.student_data = {} | |
self.requirements = {} | |
self.current_courses = [] | |
self.course_history = [] | |
def parse_transcript(self, text: str) -> Dict: | |
"""Main method to parse transcript text""" | |
self._extract_student_info(text) | |
self._extract_requirements(text) | |
self._extract_course_history(text) | |
self._extract_current_courses(text) | |
return { | |
"student_info": self.student_data, | |
"requirements": self.requirements, | |
"current_courses": self.current_courses, | |
"course_history": self.course_history, | |
"completion_status": self._calculate_completion() | |
} | |
def _extract_student_info(self, text: str): | |
"""Extract student personal information""" | |
header_match = re.search( | |
r"(\d{7}) - ([\w\s,]+)\s*\|\s*Cohort \w+\s*\|\s*Un-weighted GPA ([\d.]+)\s*\|\s*Comm Serv Hours (\d+)", | |
text | |
) | |
if header_match: | |
self.student_data = { | |
"id": header_match.group(1), | |
"name": header_match.group(2).strip(), | |
"unweighted_gpa": float(header_match.group(3)), | |
"community_service_hours": int(header_match.group(4)) | |
} | |
# Extract additional info | |
grade_match = re.search( | |
r"Current Grade: (\d+)\s*\|\s*YOG (\d{4})\s*\|\s*Weighted GPA ([\d.]+)\s*\|\s*Total Credits Earned ([\d.]+)", | |
text | |
) | |
if grade_match: | |
self.student_data.update({ | |
"current_grade": grade_match.group(1), | |
"graduation_year": grade_match.group(2), | |
"weighted_gpa": float(grade_match.group(3)), | |
"total_credits": float(grade_match.group(4)) | |
}) | |
def _extract_requirements(self, text: str): | |
"""Parse the graduation requirements section""" | |
req_table = re.findall( | |
r"\|([A-Z]-[\w\s]+)\s*\|([^\|]+)\|([\d.]+)\s*\|([\d.]+)\s*\|([\d.]+)\s*\|([^\|]+)\|", | |
text | |
) | |
for row in req_table: | |
req_name = row[0].strip() | |
self.requirements[req_name] = { | |
"required": float(row[2]), | |
"completed": float(row[4]), | |
"status": f"{row[5].strip()}%" | |
} | |
def _extract_course_history(self, text: str): | |
"""Parse the detailed course history""" | |
course_lines = re.findall( | |
r"\|([A-Z]-[\w\s&\(\)]+)\s*\|(\d{4}-\d{4})\s*\|(\d{2})\s*\|([A-Z0-9]+)\s*\|([^\|]+)\|([^\|]+)\|([^\|]+)\|([A-Z])\s*\|([YRXW]?)\s*\|([^\|]+)\|", | |
text | |
) | |
for course in course_lines: | |
self.course_history.append({ | |
"requirement_category": course[0].strip(), | |
"school_year": course[1], | |
"grade_level": course[2], | |
"course_code": course[3], | |
"description": course[4].strip(), | |
"term": course[5].strip(), | |
"district_number": course[6].strip(), | |
"grade": course[7], | |
"inclusion_status": course[8], | |
"credits": course[9].strip() | |
}) | |
def _extract_current_courses(self, text: str): | |
"""Identify courses currently in progress""" | |
in_progress = [c for c in self.course_history if "inProgress" in c["credits"]] | |
self.current_courses = [ | |
{ | |
"course": c["description"], | |
"category": c["requirement_category"], | |
"term": c["term"], | |
"credits": c["credits"] | |
} | |
for c in in_progress | |
] | |
def _calculate_completion(self) -> Dict: | |
"""Calculate overall completion status""" | |
total_required = sum(req["required"] for req in self.requirements.values()) | |
total_completed = sum(req["completed"] for req in self.requirements.values()) | |
return { | |
"total_required": total_required, | |
"total_completed": total_completed, | |
"percent_complete": round((total_completed / total_required) * 100, 1), | |
"remaining_credits": total_required - total_completed | |
} | |
def to_json(self) -> str: | |
"""Export parsed data as JSON""" | |
return json.dumps({ | |
"student_info": self.student_data, | |
"requirements": self.requirements, | |
"current_courses": self.current_courses, | |
"course_history": self.course_history, | |
"completion_status": self._calculate_completion() | |
}, indent=2) | |
async def parse_transcript_async(file_obj, progress=gr.Progress()): | |
"""Async wrapper for transcript parsing""" | |
return await asyncio.to_thread(parse_transcript, file_obj, progress) | |
def parse_transcript_with_ai(text: str, progress=gr.Progress()) -> Dict: | |
"""Use AI model to parse transcript text with progress feedback""" | |
model, tokenizer = model_loader.load_model(model_loader.current_model or DEFAULT_MODEL, progress) | |
if model is None or tokenizer is None: | |
raise gr.Error(f"Model failed to load. {model_loader.error or 'Please try loading a model first.'}") | |
# First try the structured parser | |
try: | |
progress(0.1, desc="Parsing transcript structure...") | |
parser = TranscriptParser() | |
parsed_data = parser.parse_transcript(text) | |
progress(0.9, desc="Formatting results...") | |
# Convert to expected format | |
formatted_data = { | |
"grade_level": parsed_data["student_info"].get("current_grade", "Unknown"), | |
"gpa": { | |
"weighted": parsed_data["student_info"].get("weighted_gpa", "N/A"), | |
"unweighted": parsed_data["student_info"].get("unweighted_gpa", "N/A") | |
}, | |
"courses": [] | |
} | |
# Add courses | |
for course in parsed_data["course_history"]: | |
formatted_data["courses"].append({ | |
"code": course["course_code"], | |
"name": course["description"], | |
"grade": course["grade"], | |
"credits": course["credits"], | |
"year": course["school_year"], | |
"grade_level": course["grade_level"] | |
}) | |
progress(1.0) | |
return validate_parsed_data(formatted_data) | |
except Exception as e: | |
logging.warning(f"Structured parsing failed, falling back to AI: {str(e)}") | |
# Fall back to AI parsing if structured parsing fails | |
return parse_transcript_with_ai_fallback(text, progress) | |
def parse_transcript_with_ai_fallback(text: str, progress=gr.Progress()) -> Dict: | |
"""Fallback AI parsing method""" | |
# Pre-process the text | |
text = remove_sensitive_info(text[:15000]) # Limit input size | |
prompt = f""" | |
Analyze this academic transcript and extract structured information: | |
- Current grade level | |
- Weighted GPA (if available) | |
- Unweighted GPA (if available) | |
- List of all courses with: | |
* Course code | |
* Course name | |
* Grade received | |
* Credits earned | |
* Year/semester taken | |
* Grade level when taken | |
Return the data in JSON format. | |
Transcript Text: | |
{text} | |
""" | |
try: | |
progress(0.1, desc="Processing transcript with AI...") | |
# Tokenize and generate response | |
inputs = model_loader.tokenizer(prompt, return_tensors="pt").to(model_loader.model.device) | |
progress(0.4) | |
outputs = model_loader.model.generate( | |
**inputs, | |
max_new_tokens=1500, | |
temperature=0.1, | |
do_sample=True | |
) | |
progress(0.8) | |
# Decode the response | |
response = model_loader.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract JSON from response | |
try: | |
json_str = response.split('```json')[1].split('```')[0].strip() | |
parsed_data = json.loads(json_str) | |
except (IndexError, json.JSONDecodeError): | |
# Fallback: Extract JSON-like substring | |
json_str = re.search(r'\{.*\}', response, re.DOTALL).group() | |
parsed_data = json.loads(json_str) | |
progress(1.0) | |
return validate_parsed_data(parsed_data) | |
except torch.cuda.OutOfMemoryError: | |
raise gr.Error("The model ran out of memory. Try with a smaller transcript or use a smaller model.") | |
except Exception as e: | |
logging.error(f"AI parsing error: {str(e)}") | |
raise gr.Error(f"Error processing transcript: {str(e)}") | |
def validate_parsed_data(data: Dict) -> Dict: | |
"""Validate and clean the parsed data structure.""" | |
if not isinstance(data, dict): | |
raise ValueError("Invalid data format") | |
# Set default structure if missing | |
if 'grade_level' not in data: | |
data['grade_level'] = 'Unknown' | |
if 'gpa' not in data: | |
data['gpa'] = {'weighted': 'N/A', 'unweighted': 'N/A'} | |
if 'courses' not in data: | |
data['courses'] = [] | |
# Clean course data | |
for course in data['courses']: | |
if 'grade' in course: | |
course['grade'] = course['grade'].upper().strip() | |
# Ensure numeric credits are strings | |
if 'credits' in course and isinstance(course['credits'], (int, float)): | |
course['credits'] = str(course['credits']) | |
return data | |
def format_transcript_output(data: Dict) -> str: | |
"""Format the parsed data into human-readable text.""" | |
output = [] | |
output.append(f"Student Transcript Summary\n{'='*40}") | |
output.append(f"Current Grade Level: {data.get('grade_level', 'Unknown')}") | |
if 'gpa' in data: | |
output.append(f"\nGPA:") | |
output.append(f"- Weighted: {data['gpa'].get('weighted', 'N/A')}") | |
output.append(f"- Unweighted: {data['gpa'].get('unweighted', 'N/A')}") | |
if 'courses' in data: | |
output.append("\nCourse History:\n" + '='*40) | |
# Group courses by grade level | |
courses_by_grade = defaultdict(list) | |
for course in data['courses']: | |
grade_level = course.get('grade_level', 'Unknown') | |
courses_by_grade[grade_level].append(course) | |
# Sort grades numerically | |
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x): | |
output.append(f"\nGrade {grade}:\n{'-'*30}") | |
for course in courses_by_grade[grade]: | |
course_str = f"- {course.get('code', '')} {course.get('name', 'Unnamed course')}" | |
if 'grade' in course: | |
course_str += f" (Grade: {course['grade']})" | |
if 'credits' in course: | |
course_str += f" | Credits: {course['credits']}" | |
if 'year' in course: | |
course_str += f" | Year: {course['year']}" | |
output.append(course_str) | |
return '\n'.join(output) | |
def parse_transcript(file_obj, progress=gr.Progress()) -> Tuple[str, Optional[Dict]]: | |
"""Main function to parse transcript files.""" | |
try: | |
if not file_obj: | |
raise ValueError("Please upload a file first") | |
validate_file(file_obj) | |
file_ext = os.path.splitext(file_obj.name)[1].lower() | |
# Extract text from file | |
text = extract_text_from_file(file_obj.name, file_ext) | |
# Use AI for parsing | |
parsed_data = parse_transcript_with_ai(text, progress) | |
# Format output text | |
output_text = format_transcript_output(parsed_data) | |
# Prepare the data structure for saving | |
transcript_data = { | |
"grade_level": parsed_data.get('grade_level', 'Unknown'), | |
"gpa": parsed_data.get('gpa', {}), | |
"courses": defaultdict(list) | |
} | |
# Organize courses by grade level | |
for course in parsed_data.get('courses', []): | |
grade_level = course.get('grade_level', 'Unknown') | |
transcript_data["courses"][grade_level].append(course) | |
return output_text, transcript_data | |
except Exception as e: | |
logging.error(f"Transcript processing error: {str(e)}") | |
return f"Error processing transcript: {str(e)}", None | |
# ========== LEARNING STYLE QUIZ ========== | |
class LearningStyleQuiz: | |
def __init__(self): | |
self.questions = [ | |
"When you study for a test, you prefer to:", | |
"When you need directions to a new place, you prefer:", | |
"When you learn a new skill, you prefer to:", | |
"When you're trying to concentrate, you:", | |
"When you meet new people, you remember them by:", | |
"When you're assembling furniture or a gadget, you:", | |
"When choosing a restaurant, you rely most on:", | |
"When you're in a waiting room, you typically:", | |
"When giving someone instructions, you tend to:", | |
"When you're trying to recall information, you:", | |
"When you're at a museum or exhibit, you:", | |
"When you're learning a new language, you prefer:", | |
"When you're taking notes in class, you:", | |
"When you're explaining something complex, you:", | |
"When you're at a party, you enjoy:", | |
"When you're trying to remember a phone number, you:", | |
"When you're relaxing, you prefer to:", | |
"When you're learning to use new software, you:", | |
"When you're giving a presentation, you rely on:", | |
"When you're solving a difficult problem, you:" | |
] | |
self.options = [ | |
["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"], | |
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"], | |
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"], | |
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"], | |
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"], | |
["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"], | |
["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"], | |
["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"], | |
["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"], | |
["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"], | |
["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"], | |
["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"], | |
["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"], | |
["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"], | |
["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"], | |
["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"], | |
["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"], | |
["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"], | |
["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"], | |
["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"] | |
] | |
self.learning_styles = { | |
"Visual": { | |
"description": "Visual learners prefer using images, diagrams, and spatial understanding.", | |
"tips": [ | |
"Use color coding in your notes", | |
"Create mind maps and diagrams", | |
"Watch educational videos", | |
"Use flashcards with images", | |
"Highlight important information in different colors" | |
], | |
"careers": [ | |
"Graphic Designer", "Architect", "Photographer", | |
"Engineer", "Surgeon", "Pilot" | |
] | |
}, | |
"Auditory": { | |
"description": "Auditory learners learn best through listening and speaking.", | |
"tips": [ | |
"Record lectures and listen to them", | |
"Participate in study groups", | |
"Explain concepts out loud to yourself", | |
"Use rhymes or songs to remember information", | |
"Listen to educational podcasts" | |
], | |
"careers": [ | |
"Musician", "Journalist", "Lawyer", | |
"Psychologist", "Teacher", "Customer Service" | |
] | |
}, | |
"Reading/Writing": { | |
"description": "These learners prefer information displayed as words.", | |
"tips": [ | |
"Write detailed notes", | |
"Create summaries in your own words", | |
"Read textbooks and articles", | |
"Make lists to organize information", | |
"Rewrite your notes to reinforce learning" | |
], | |
"careers": [ | |
"Writer", "Researcher", "Editor", | |
"Accountant", "Programmer", "Historian" | |
] | |
}, | |
"Kinesthetic": { | |
"description": "Kinesthetic learners learn through movement and hands-on activities.", | |
"tips": [ | |
"Use hands-on activities", | |
"Take frequent movement breaks", | |
"Create physical models", | |
"Associate information with physical actions", | |
"Study while walking or pacing" | |
], | |
"careers": [ | |
"Athlete", "Chef", "Mechanic", | |
"Dancer", "Physical Therapist", "Carpenter" | |
] | |
} | |
} | |
def evaluate_quiz(self, *answers) -> str: | |
"""Evaluate quiz answers and generate enhanced results.""" | |
answers = list(answers) # Convert tuple to list | |
if len(answers) != len(self.questions): | |
raise gr.Error("Not all questions were answered") | |
scores = {style: 0 for style in self.learning_styles} | |
for i, answer in enumerate(answers): | |
if not answer: | |
continue # Skip unanswered questions | |
for j, style in enumerate(self.learning_styles): | |
if answer == self.options[i][j]: | |
scores[style] += 1 | |
break | |
total_answered = sum(1 for ans in answers if ans) | |
if total_answered == 0: | |
raise gr.Error("No answers provided") | |
percentages = {style: (score/total_answered)*100 for style, score in scores.items()} | |
sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True) | |
# Generate enhanced results report | |
result = "## Your Learning Style Results\n\n" | |
result += "### Scores:\n" | |
for style, score in sorted_styles: | |
result += f"- **{style}**: {score}/{total_answered} ({percentages[style]:.1f}%)\n" | |
max_score = max(scores.values()) | |
primary_styles = [style for style, score in scores.items() if score == max_score] | |
result += "\n### Analysis:\n" | |
if len(primary_styles) == 1: | |
primary_style = primary_styles[0] | |
style_info = self.learning_styles[primary_style] | |
result += f"Your primary learning style is **{primary_style}**\n\n" | |
result += f"**{primary_style} Characteristics**:\n" | |
result += f"{style_info['description']}\n\n" | |
result += "**Recommended Study Strategies**:\n" | |
for tip in style_info['tips']: | |
result += f"- {tip}\n" | |
result += "\n**Potential Career Paths**:\n" | |
for career in style_info['careers'][:6]: | |
result += f"- {career}\n" | |
# Add complementary strategies | |
complementary = [s for s in sorted_styles if s[0] != primary_style][0][0] | |
result += f"\nYou might also benefit from some **{complementary}** strategies:\n" | |
for tip in self.learning_styles[complementary]['tips'][:3]: | |
result += f"- {tip}\n" | |
else: | |
result += "You have multiple strong learning styles:\n" | |
for style in primary_styles: | |
result += f"- **{style}**\n" | |
result += "\n**Combined Learning Strategies**:\n" | |
result += "You may benefit from combining different learning approaches:\n" | |
for style in primary_styles: | |
result += f"\n**{style}** techniques:\n" | |
for tip in self.learning_styles[style]['tips'][:2]: | |
result += f"- {tip}\n" | |
result += f"\n**{style}** career suggestions:\n" | |
for career in self.learning_styles[style]['careers'][:3]: | |
result += f"- {career}\n" | |
return result | |
# Initialize quiz instance | |
learning_style_quiz = LearningStyleQuiz() | |
# ========== PROFILE MANAGEMENT ========== | |
class ProfileManager: | |
def __init__(self): | |
self.profiles_dir = Path(PROFILES_DIR) | |
self.profiles_dir.mkdir(exist_ok=True, parents=True) | |
self.current_session = None | |
def set_session(self, session_token: str) -> None: | |
"""Set the current session token.""" | |
self.current_session = session_token | |
def get_profile_path(self, name: str) -> Path: | |
"""Get profile path with session token if available.""" | |
if self.current_session: | |
return self.profiles_dir / f"{name.replace(' ', '_')}_{self.current_session}_profile.json" | |
return self.profiles_dir / f"{name.replace(' ', '_')}_profile.json" | |
def save_profile(self, name: str, age: Union[int, str], interests: str, | |
transcript: Dict, learning_style: str, | |
movie: str, movie_reason: str, show: str, show_reason: str, | |
book: str, book_reason: str, character: str, character_reason: str, | |
blog: str) -> str: | |
"""Save student profile with validation.""" | |
try: | |
# Validate required fields | |
name = validate_name(name) | |
age = validate_age(age) | |
interests = sanitize_input(interests) | |
# Prepare favorites data | |
favorites = { | |
"movie": sanitize_input(movie), | |
"movie_reason": sanitize_input(movie_reason), | |
"show": sanitize_input(show), | |
"show_reason": sanitize_input(show_reason), | |
"book": sanitize_input(book), | |
"book_reason": sanitize_input(book_reason), | |
"character": sanitize_input(character), | |
"character_reason": sanitize_input(character_reason) | |
} | |
# Prepare full profile data | |
data = { | |
"name": name, | |
"age": age, | |
"interests": interests, | |
"transcript": transcript if transcript else {}, | |
"learning_style": learning_style if learning_style else "Not assessed", | |
"favorites": favorites, | |
"blog": sanitize_input(blog) if blog else "", | |
"session_token": self.current_session | |
} | |
# Save to JSON file | |
filepath = self.get_profile_path(name) | |
with open(filepath, "w", encoding='utf-8') as f: | |
json.dump(data, f, indent=2, ensure_ascii=False) | |
# Upload to HF Hub if token is available | |
if HF_TOKEN: | |
try: | |
hf_api.upload_file( | |
path_or_fileobj=filepath, | |
path_in_repo=f"profiles/{filepath.name}", | |
repo_id="your-username/student-learning-assistant", | |
repo_type="dataset" | |
) | |
except Exception as e: | |
logging.error(f"Failed to upload to HF Hub: {str(e)}") | |
return self._generate_profile_summary(data) | |
except Exception as e: | |
logging.error(f"Error saving profile: {str(e)}") | |
raise gr.Error(f"Error saving profile: {str(e)}") | |
def load_profile(self, name: str = None, session_token: str = None) -> Dict: | |
"""Load profile by name or return the first one found.""" | |
try: | |
if session_token: | |
profile_pattern = f"*{session_token}_profile.json" | |
else: | |
profile_pattern = "*.json" | |
profiles = list(self.profiles_dir.glob(profile_pattern)) | |
if not profiles: | |
return {} | |
if name: | |
# Find profile by name | |
name = name.replace(" ", "_") | |
if session_token: | |
profile_file = self.profiles_dir / f"{name}_{session_token}_profile.json" | |
else: | |
profile_file = self.profiles_dir / f"{name}_profile.json" | |
if not profile_file.exists(): | |
# Try loading from HF Hub | |
if HF_TOKEN: | |
try: | |
hf_api.download_file( | |
path_in_repo=f"profiles/{profile_file.name}", | |
repo_id="your-username/student-learning-assistant", | |
repo_type="dataset", | |
local_dir=self.profiles_dir | |
) | |
except: | |
raise gr.Error(f"No profile found for {name}") | |
else: | |
raise gr.Error(f"No profile found for {name}") | |
else: | |
# Load the first profile found | |
profile_file = profiles[0] | |
with open(profile_file, "r", encoding='utf-8') as f: | |
return json.load(f) | |
except Exception as e: | |
logging.error(f"Error loading profile: {str(e)}") | |
return {} | |
def list_profiles(self, session_token: str = None) -> List[str]: | |
"""List all available profile names for the current session.""" | |
if session_token: | |
profiles = list(self.profiles_dir.glob(f"*{session_token}_profile.json")) | |
else: | |
profiles = list(self.profiles_dir.glob("*.json")) | |
# Extract just the name part (without session token) | |
profile_names = [] | |
for p in profiles: | |
name_part = p.stem.replace("_profile", "") | |
if session_token: | |
name_part = name_part.replace(f"_{session_token}", "") | |
profile_names.append(name_part.replace("_", " ")) | |
return profile_names | |
def _generate_profile_summary(self, data: Dict) -> str: | |
"""Generate markdown summary of the profile.""" | |
transcript = data.get("transcript", {}) | |
favorites = data.get("favorites", {}) | |
learning_style = data.get("learning_style", "Not assessed") | |
markdown = f"""## Student Profile: {data['name']} | |
### Basic Information | |
- **Age:** {data['age']} | |
- **Interests:** {data.get('interests', 'Not specified')} | |
- **Learning Style:** {learning_style.split('##')[0].strip()} | |
### Academic Information | |
{self._format_transcript(transcript)} | |
### Favorites | |
- **Movie:** {favorites.get('movie', 'Not specified')} | |
*Reason:* {favorites.get('movie_reason', 'Not specified')} | |
- **TV Show:** {favorites.get('show', 'Not specified')} | |
*Reason:* {favorites.get('show_reason', 'Not specified')} | |
- **Book:** {favorites.get('book', 'Not specified')} | |
*Reason:* {favorites.get('book_reason', 'Not specified')} | |
- **Character:** {favorites.get('character', 'Not specified')} | |
*Reason:* {favorites.get('character_reason', 'Not specified')} | |
### Personal Blog | |
{data.get('blog', '_No blog provided_')} | |
""" | |
return markdown | |
def _format_transcript(self, transcript: Dict) -> str: | |
"""Format transcript data for display.""" | |
if not transcript or "courses" not in transcript: | |
return "_No transcript information available_" | |
display = "#### Course History\n" | |
courses_by_grade = transcript["courses"] | |
if isinstance(courses_by_grade, dict): | |
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x): | |
display += f"\n**Grade {grade}**\n" | |
for course in courses_by_grade[grade]: | |
display += f"- {course.get('code', '')} {course.get('name', 'Unnamed course')}" | |
if 'grade' in course and course['grade']: | |
display += f" (Grade: {course['grade']})" | |
if 'credits' in course: | |
display += f" | Credits: {course['credits']}" | |
display += f" | Year: {course.get('year', 'N/A')}\n" | |
if 'gpa' in transcript: | |
gpa = transcript['gpa'] | |
display += "\n**GPA**\n" | |
display += f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n" | |
display += f"- Weighted: {gpa.get('weighted', 'N/A')}\n" | |
return display | |
# Initialize profile manager | |
profile_manager = ProfileManager() | |
# ========== AI TEACHING ASSISTANT ========== | |
class TeachingAssistant: | |
def __init__(self): | |
self.context_history = [] | |
self.max_context_length = 5 # Keep last 5 exchanges for context | |
def generate_response(self, message: str, history: List[List[Union[str, None]]], session_token: str) -> str: | |
"""Generate personalized response based on student profile and context.""" | |
try: | |
# Load profile with session token | |
profile = profile_manager.load_profile(session_token=session_token) | |
if not profile: | |
return "Please complete and save your profile first using the previous tabs." | |
# Update context history | |
self._update_context(message, history) | |
# Extract profile information | |
name = profile.get("name", "there") | |
learning_style = profile.get("learning_style", "") | |
grade_level = profile.get("transcript", {}).get("grade_level", "unknown") | |
gpa = profile.get("transcript", {}).get("gpa", {}) | |
interests = profile.get("interests", "") | |
courses = profile.get("transcript", {}).get("courses", {}) | |
favorites = profile.get("favorites", {}) | |
# Process message with context | |
response = self._process_message(message, profile) | |
# Add follow-up suggestions | |
if "study" in message.lower() or "learn" in message.lower(): | |
response += "\n\nWould you like me to suggest a study schedule based on your courses?" | |
elif "course" in message.lower() or "class" in message.lower(): | |
response += "\n\nWould you like help finding resources for any of these courses?" | |
return response | |
except Exception as e: | |
logging.error(f"Error generating response: {str(e)}") | |
return "I encountered an error processing your request. Please try again." | |
def _update_context(self, message: str, history: List[List[Union[str, None]]]) -> None: | |
"""Maintain conversation context.""" | |
self.context_history.append({"role": "user", "content": message}) | |
if history: | |
for h in history[-self.max_context_length:]: | |
if h[0]: # User message | |
self.context_history.append({"role": "user", "content": h[0]}) | |
if h[1]: # Assistant message | |
self.context_history.append({"role": "assistant", "content": h[1]}) | |
# Trim to maintain max context length | |
self.context_history = self.context_history[-(self.max_context_length*2):] | |
def _process_message(self, message: str, profile: Dict) -> str: | |
"""Process user message with profile context.""" | |
message_lower = message.lower() | |
# Greetings | |
if any(greet in message_lower for greet in ["hi", "hello", "hey", "greetings"]): | |
return f"Hello {profile.get('name', 'there')}! How can I help you with your learning today?" | |
# Study help | |
study_words = ["study", "learn", "prepare", "exam", "test", "homework"] | |
if any(word in message_lower for word in study_words): | |
return self._generate_study_advice(profile) | |
# Grade help | |
grade_words = ["grade", "gpa", "score", "marks", "results"] | |
if any(word in message_lower for word in grade_words): | |
return self._generate_grade_advice(profile) | |
# Interest help | |
interest_words = ["interest", "hobby", "passion", "extracurricular"] | |
if any(word in message_lower for word in interest_words): | |
return self._generate_interest_advice(profile) | |
# Course help | |
course_words = ["courses", "classes", "transcript", "schedule", "subject"] | |
if any(word in message_lower for word in course_words): | |
return self._generate_course_advice(profile) | |
# Favorites | |
favorite_words = ["movie", "show", "book", "character", "favorite"] | |
if any(word in message_lower for word in favorite_words): | |
return self._generate_favorites_response(profile) | |
# General help | |
if "help" in message_lower: | |
return self._generate_help_response() | |
# Default response | |
return ("I'm your personalized teaching assistant. I can help with study tips, " | |
"grade information, course advice, and more. Try asking about how to " | |
"study effectively or about your course history.") | |
def _generate_study_advice(self, profile: Dict) -> str: | |
"""Generate study advice based on learning style.""" | |
learning_style = profile.get("learning_style", "") | |
response = "" | |
if "Visual" in learning_style: | |
response = ("Based on your visual learning style, I recommend:\n" | |
"- Creating colorful mind maps or diagrams\n" | |
"- Using highlighters to color-code your notes\n" | |
"- Watching educational videos on the topics\n" | |
"- Creating flashcards with images\n\n") | |
elif "Auditory" in learning_style: | |
response = ("Based on your auditory learning style, I recommend:\n" | |
"- Recording your notes and listening to them\n" | |
"- Participating in study groups to discuss concepts\n" | |
"- Explaining the material out loud to yourself\n" | |
"- Finding podcasts or audio lectures on the topics\n\n") | |
elif "Reading/Writing" in learning_style: | |
response = ("Based on your reading/writing learning style, I recommend:\n" | |
"- Writing detailed summaries in your own words\n" | |
"- Creating organized outlines of the material\n" | |
"- Reading additional textbooks or articles\n" | |
"- Rewriting your notes to reinforce learning\n\n") | |
elif "Kinesthetic" in learning_style: | |
response = ("Based on your kinesthetic learning style, I recommend:\n" | |
"- Creating physical models or demonstrations\n" | |
"- Using hands-on activities to learn concepts\n" | |
"- Taking frequent movement breaks while studying\n" | |
"- Associating information with physical actions\n\n") | |
else: | |
response = ("Here are some general study tips:\n" | |
"- Use the Pomodoro technique (25 min study, 5 min break)\n" | |
"- Space out your study sessions over time\n" | |
"- Test yourself with practice questions\n" | |
"- Teach the material to someone else\n\n") | |
# Add time management advice | |
response += ("**Time Management Tips**:\n" | |
"- Create a study schedule and stick to it\n" | |
"- Prioritize difficult subjects when you're most alert\n" | |
"- Break large tasks into smaller, manageable chunks\n" | |
"- Set specific goals for each study session") | |
return response | |
def _generate_grade_advice(self, profile: Dict) -> str: | |
"""Generate response about grades and GPA.""" | |
gpa = profile.get("transcript", {}).get("gpa", {}) | |
courses = profile.get("transcript", {}).get("courses", {}) | |
response = (f"Your GPA information:\n" | |
f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n" | |
f"- Weighted: {gpa.get('weighted', 'N/A')}\n\n") | |
# Identify any failing grades | |
weak_subjects = [] | |
for grade_level, course_list in courses.items(): | |
for course in course_list: | |
if course.get('grade', '').upper() in ['D', 'F']: | |
weak_subjects.append(f"{course.get('code', '')} {course.get('name', 'Unknown course')}") | |
if weak_subjects: | |
response += ("**Areas for Improvement**:\n" | |
f"You might want to focus on these subjects: {', '.join(weak_subjects)}\n\n") | |
response += ("**Grade Improvement Strategies**:\n" | |
"- Meet with your teachers to discuss your performance\n" | |
"- Identify specific areas where you lost points\n" | |
"- Create a targeted study plan for weak areas\n" | |
"- Practice with past exams or sample questions") | |
return response | |
def _generate_interest_advice(self, profile: Dict) -> str: | |
"""Generate response based on student interests.""" | |
interests = profile.get("interests", "") | |
response = f"I see you're interested in: {interests}\n\n" | |
response += ("**Suggestions**:\n" | |
"- Look for clubs or extracurricular activities related to these interests\n" | |
"- Explore career paths that align with these interests\n" | |
"- Find online communities or forums about these topics\n" | |
"- Consider projects or independent study in these areas") | |
return response | |
def _generate_course_advice(self, profile: Dict) -> str: | |
"""Generate response about courses.""" | |
courses = profile.get("transcript", {}).get("courses", {}) | |
grade_level = profile.get("transcript", {}).get("grade_level", "unknown") | |
response = "Here's a summary of your courses:\n" | |
for grade in sorted(courses.keys(), key=lambda x: int(x) if x.isdigit() else x): | |
response += f"\n**Grade {grade}**:\n" | |
for course in courses[grade]: | |
response += f"- {course.get('code', '')} {course.get('name', 'Unnamed course')}" | |
if 'grade' in course: | |
response += f" (Grade: {course['grade']})" | |
response += "\n" | |
response += f"\nAs a grade {grade_level} student, you might want to:\n" | |
if grade_level in ["9", "10"]: | |
response += ("- Focus on building strong foundational skills\n" | |
"- Explore different subjects to find your interests\n" | |
"- Start thinking about college/career requirements") | |
elif grade_level in ["11", "12"]: | |
response += ("- Focus on courses relevant to your college/career goals\n" | |
"- Consider taking AP or advanced courses if available\n" | |
"- Ensure you're meeting graduation requirements") | |
return response | |
def _generate_favorites_response(self, profile: Dict) -> str: | |
"""Generate response about favorite items.""" | |
favorites = profile.get("favorites", {}) | |
response = "I see you enjoy:\n" | |
if favorites.get('movie'): | |
response += f"- Movie: {favorites['movie']} ({favorites.get('movie_reason', 'no reason provided')})\n" | |
if favorites.get('show'): | |
response += f"- TV Show: {favorites['show']} ({favorites.get('show_reason', 'no reason provided')})\n" | |
if favorites.get('book'): | |
response += f"- Book: {favorites['book']} ({favorites.get('book_reason', 'no reason provided')})\n" | |
if favorites.get('character'): | |
response += f"- Character: {favorites['character']} ({favorites.get('character_reason', 'no reason provided')})\n" | |
response += "\nThese preferences suggest you might enjoy:\n" | |
response += "- Similar books/movies in the same genre\n" | |
response += "- Creative projects related to these stories\n" | |
response += "- Analyzing themes or characters in your schoolwork" | |
return response | |
def _generate_help_response(self) -> str: | |
"""Generate help response with available commands.""" | |
return ("""I can help with: | |
- **Study tips**: "How should I study for math?" | |
- **Grade information**: "What's my GPA?" | |
- **Course advice**: "Show me my course history" | |
- **Interest suggestions**: "What clubs match my interests?" | |
- **General advice**: "How can I improve my grades?" | |
Try asking about any of these topics!""") | |
# Initialize teaching assistant | |
teaching_assistant = TeachingAssistant() | |
# ========== GRADIO INTERFACE ========== | |
def create_interface(): | |
with gr.Blocks(theme=gr.themes.Soft(), title="Student Learning Assistant") as app: | |
# Session state | |
session_token = gr.State(value=generate_session_token()) | |
profile_manager.set_session(session_token.value) | |
# Track completion status for each tab | |
tab_completed = gr.State({ | |
0: False, # Transcript Upload | |
1: False, # Learning Style Quiz | |
2: False, # Personal Questions | |
3: False, # Save & Review | |
4: False # AI Assistant | |
}) | |
# Custom CSS for better styling | |
app.css = """ | |
.gradio-container { | |
max-width: 1200px !important; | |
margin: 0 auto; | |
} | |
.tab { | |
padding: 20px; | |
border-radius: 8px; | |
background: white; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
.progress-bar { | |
height: 5px; | |
background: linear-gradient(to right, #4CAF50, #8BC34A); | |
margin-bottom: 15px; | |
border-radius: 3px; | |
} | |
.quiz-question { | |
margin-bottom: 15px; | |
padding: 15px; | |
background: #f5f5f5; | |
border-radius: 5px; | |
} | |
.profile-card { | |
border: 1px solid #e0e0e0; | |
border-radius: 8px; | |
padding: 15px; | |
margin-bottom: 15px; | |
background: white; | |
} | |
.chatbot { | |
min-height: 500px; | |
} | |
.completed-tab { | |
background: #2196F3 !important; | |
color: white !important; | |
} | |
.incomplete-tab { | |
background: #E0E0E0 !important; | |
} | |
.alert-box { | |
padding: 15px; | |
margin-bottom: 20px; | |
border: 1px solid transparent; | |
border-radius: 4px; | |
color: #31708f; | |
background-color: #d9edf7; | |
border-color: #bce8f1; | |
} | |
.nav-message { | |
padding: 10px; | |
margin: 10px 0; | |
border-radius: 4px; | |
background-color: #ffebee; | |
color: #c62828; | |
} | |
.model-loading { | |
padding: 15px; | |
margin: 15px 0; | |
border-radius: 4px; | |
background-color: #fff3e0; | |
color: #e65100; | |
} | |
.model-selection { | |
margin-bottom: 20px; | |
padding: 15px; | |
background: #f8f9fa; | |
border-radius: 8px; | |
} | |
""" | |
gr.Markdown(""" | |
# Student Learning Assistant | |
**Your personalized education companion** | |
Complete each step to get customized learning recommendations. | |
""") | |
# Model selection section | |
with gr.Group(elem_classes="model-selection"): | |
model_selector = gr.Dropdown( | |
choices=list(MODEL_CHOICES.keys()), | |
value=DEFAULT_MODEL, | |
label="Select AI Model", | |
interactive=True | |
) | |
load_model_btn = gr.Button("Load Selected Model", variant="secondary") | |
model_status = gr.HTML( | |
value="<div class='model-loading'>Model not loaded yet. Please select and load a model.</div>", | |
visible=True | |
) | |
# Progress tracker | |
with gr.Row(): | |
with gr.Column(scale=1): | |
step1 = gr.Button("1. Upload Transcript", elem_classes="incomplete-tab") | |
with gr.Column(scale=1): | |
step2 = gr.Button("2. Learning Style Quiz", elem_classes="incomplete-tab", interactive=False) | |
with gr.Column(scale=1): | |
step3 = gr.Button("3. Personal Questions", elem_classes="incomplete-tab", interactive=False) | |
with gr.Column(scale=1): | |
step4 = gr.Button("4. Save & Review", elem_classes="incomplete-tab", interactive=False) | |
with gr.Column(scale=1): | |
step5 = gr.Button("5. AI Assistant", elem_classes="incomplete-tab", interactive=False) | |
# Alert box for quiz submission | |
quiz_alert = gr.HTML(visible=False) | |
# Navigation message | |
nav_message = gr.HTML(elem_classes="nav-message", visible=False) | |
# Main tabs | |
with gr.Tabs() as tabs: | |
# ===== TAB 1: Transcript Upload ===== | |
with gr.Tab("Transcript Upload", id=0) as tab1: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Step 1: Upload Your Transcript") | |
gr.Markdown("Upload a PDF or image of your academic transcript to analyze your courses and GPA.") | |
with gr.Group(): | |
transcript_file = gr.File( | |
label="Transcript (PDF or Image)", | |
file_types=ALLOWED_FILE_TYPES, | |
type="filepath" | |
) | |
upload_btn = gr.Button("Upload & Analyze", variant="primary") | |
gr.Markdown(""" | |
**Supported Formats**: PDF, PNG, JPG | |
**Note**: Your file is processed locally and not stored permanently. | |
""") | |
with gr.Column(scale=2): | |
transcript_output = gr.Textbox( | |
label="Transcript Analysis", | |
lines=20, | |
interactive=False | |
) | |
transcript_data = gr.State() | |
def process_transcript_and_update(file_obj, current_tab_status, progress=gr.Progress()): | |
try: | |
output_text, data = parse_transcript(file_obj, progress) | |
if "Error" not in output_text: | |
new_status = current_tab_status.copy() | |
new_status[0] = True | |
return ( | |
output_text, | |
data, | |
new_status, | |
gr.update(elem_classes="completed-tab"), | |
gr.update(interactive=True), | |
gr.update(visible=False) | |
except Exception as e: | |
logging.error(f"Upload error: {str(e)}") | |
return ( | |
"Error processing transcript. Please try again.", | |
None, | |
current_tab_status, | |
gr.update(), | |
gr.update(), | |
gr.update(visible=True, value=f"<div class='nav-message'>Error: {str(e)}</div>")) | |
upload_btn.click( | |
fn=process_transcript_and_update, | |
inputs=[transcript_file, tab_completed], | |
outputs=[transcript_output, transcript_data, tab_completed, step1, step2, nav_message], | |
concurrency_limit=1 | |
) | |
# ===== TAB 2: Learning Style Quiz ===== | |
with gr.Tab("Learning Style Quiz", id=1) as tab2: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Step 2: Discover Your Learning Style") | |
gr.Markdown("Complete this 20-question quiz to identify whether you're a visual, auditory, reading/writing, or kinesthetic learner.") | |
progress = gr.HTML("<div class='progress-bar' style='width: 0%'></div>") | |
quiz_submit = gr.Button("Submit Quiz", variant="primary") | |
with gr.Column(scale=2): | |
quiz_components = [] | |
with gr.Accordion("Quiz Questions", open=True): | |
for i, (question, options) in enumerate(zip(learning_style_quiz.questions, learning_style_quiz.options)): | |
with gr.Group(elem_classes="quiz-question"): | |
q = gr.Radio( | |
options, | |
label=f"{i+1}. {question}", | |
show_label=True | |
) | |
quiz_components.append(q) | |
learning_output = gr.Markdown( | |
label="Your Learning Style Results", | |
visible=False | |
) | |
# Update progress bar as questions are answered | |
for component in quiz_components: | |
component.change( | |
fn=lambda *answers: { | |
progress: gr.HTML( | |
f"<div class='progress-bar' style='width: {sum(1 for a in answers if a)/len(answers)*100}%'></div>" | |
) | |
}, | |
inputs=quiz_components, | |
outputs=progress | |
) | |
def submit_quiz_and_update(*args): | |
# The first argument is the tab_completed state, followed by answers | |
current_tab_status = args[0] | |
answers = args[1:] | |
try: | |
result = learning_style_quiz.evaluate_quiz(*answers) | |
new_status = current_tab_status.copy() | |
new_status[1] = True | |
return ( | |
result, | |
gr.update(visible=True), | |
new_status, | |
gr.update(elem_classes="completed-tab"), | |
gr.update(interactive=True), | |
gr.update(value="<div class='alert-box'>Quiz submitted successfully! Scroll down to view your results.</div>", visible=True), | |
gr.update(visible=False)) | |
except Exception as e: | |
logging.error(f"Quiz error: {str(e)}") | |
return ( | |
f"Error evaluating quiz: {str(e)}", | |
gr.update(visible=True), | |
current_tab_status, | |
gr.update(), | |
gr.update(), | |
gr.update(value=f"<div class='nav-message'>Error: {str(e)}</div>", visible=True), | |
gr.update(visible=False)) | |
quiz_submit.click( | |
fn=submit_quiz_and_update, | |
inputs=[tab_completed] + quiz_components, | |
outputs=[learning_output, learning_output, tab_completed, step2, step3, quiz_alert, nav_message] | |
) | |
# ===== TAB 3: Personal Questions ===== | |
with gr.Tab("Personal Profile", id=2) as tab3: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Step 3: Tell Us About Yourself") | |
gr.Markdown("This information helps us provide personalized recommendations.") | |
with gr.Group(): | |
name = gr.Textbox(label="Full Name", placeholder="Your name") | |
age = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, precision=0) | |
interests = gr.Textbox( | |
label="Your Interests/Hobbies", | |
placeholder="e.g., Science, Music, Sports, Art..." | |
) | |
save_personal_btn = gr.Button("Save Information", variant="primary") | |
save_confirmation = gr.HTML(visible=False) | |
gr.Markdown("### Favorites") | |
with gr.Group(): | |
movie = gr.Textbox(label="Favorite Movie") | |
movie_reason = gr.Textbox(label="Why do you like it?", lines=2) | |
show = gr.Textbox(label="Favorite TV Show") | |
show_reason = gr.Textbox(label="Why do you like it?", lines=2) | |
book = gr.Textbox(label="Favorite Book") | |
book_reason = gr.Textbox(label="Why do you like it?", lines=2) | |
character = gr.Textbox(label="Favorite Character (from any story)") | |
character_reason = gr.Textbox(label="Why do you like them?", lines=2) | |
with gr.Column(scale=1): | |
gr.Markdown("### Additional Information") | |
blog_checkbox = gr.Checkbox( | |
label="Would you like to write a short blog about your learning experiences?", | |
value=False | |
) | |
blog_text = gr.Textbox( | |
label="Your Learning Blog", | |
placeholder="Write about your learning journey, challenges, goals...", | |
lines=8, | |
visible=False | |
) | |
blog_checkbox.change( | |
lambda x: gr.update(visible=x), | |
inputs=blog_checkbox, | |
outputs=blog_text | |
) | |
def save_personal_info(name, age, interests, current_tab_status): | |
try: | |
name = validate_name(name) | |
age = validate_age(age) | |
interests = sanitize_input(interests) | |
new_status = current_tab_status.copy() | |
new_status[2] = True | |
return ( | |
new_status, | |
gr.update(elem_classes="completed-tab"), | |
gr.update(interactive=True), | |
gr.update(value="<div class='alert-box'>Information saved!</div>", visible=True), | |
gr.update(visible=False)) | |
except Exception as e: | |
return ( | |
current_tab_status, | |
gr.update(), | |
gr.update(), | |
gr.update(visible=False), | |
gr.update(visible=True, value=f"<div class='nav-message'>Error: {str(e)}</div>")) | |
save_personal_btn.click( | |
fn=save_personal_info, | |
inputs=[name, age, interests, tab_completed], | |
outputs=[tab_completed, step3, step4, save_confirmation, nav_message] | |
) | |
# ===== TAB 4: Save & Review ===== | |
with gr.Tab("Save Profile", id=3) as tab4: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Step 4: Review & Save Your Profile") | |
gr.Markdown("Verify your information before saving. You can return to previous steps to make changes.") | |
save_btn = gr.Button("Save Profile", variant="primary") | |
# Profile management section | |
with gr.Group(): | |
load_profile_dropdown = gr.Dropdown( | |
label="Load Existing Profile", | |
choices=profile_manager.list_profiles(session_token.value), | |
visible=bool(profile_manager.list_profiles(session_token.value)) | |
) | |
with gr.Row(): | |
load_btn = gr.Button("Load", visible=bool(profile_manager.list_profiles(session_token.value))) | |
delete_btn = gr.Button("Delete", variant="stop", visible=bool(profile_manager.list_profiles(session_token.value))) | |
clear_btn = gr.Button("Clear Form") | |
with gr.Column(scale=2): | |
output_summary = gr.Markdown( | |
"Your profile summary will appear here after saving.", | |
label="Profile Summary" | |
) | |
# Save profile | |
def save_profile_and_update(*args): | |
# Extract inputs | |
inputs = args[:-1] # All except the last which is tab_completed | |
current_tab_status = args[-1] | |
try: | |
# Call the original save function | |
summary = profile_manager.save_profile(*inputs) | |
# Update completion status | |
new_status = current_tab_status.copy() | |
new_status[3] = True | |
return ( | |
summary, | |
new_status, | |
gr.update(elem_classes="completed-tab"), | |
gr.update(interactive=True), | |
gr.update(visible=False)) | |
except Exception as e: | |
logging.error(f"Save profile error: {str(e)}") | |
return ( | |
f"Error saving profile: {str(e)}", | |
current_tab_status, | |
gr.update(), | |
gr.update(), | |
gr.update(visible=True, value=f"<div class='nav-message'>Error: {str(e)}</div>")) | |
save_btn.click( | |
fn=save_profile_and_update, | |
inputs=[ | |
name, age, interests, transcript_data, learning_output, | |
movie, movie_reason, show, show_reason, | |
book, book_reason, character, character_reason, blog_text, | |
tab_completed | |
], | |
outputs=[output_summary, tab_completed, step4, step5, nav_message] | |
).then( | |
fn=lambda: profile_manager.list_profiles(session_token.value), | |
outputs=load_profile_dropdown | |
).then( | |
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))), | |
outputs=load_btn | |
).then( | |
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))), | |
outputs=delete_btn | |
) | |
# Load profile | |
load_btn.click( | |
fn=lambda name: profile_manager.load_profile(name, session_token.value), | |
inputs=load_profile_dropdown, | |
outputs=output_summary | |
) | |
# Delete profile | |
def delete_profile(name, session_token): | |
if not name: | |
raise gr.Error("Please select a profile to delete") | |
try: | |
profile_path = profile_manager.get_profile_path(name) | |
if profile_path.exists(): | |
profile_path.unlink() | |
return "Profile deleted successfully", "" | |
except Exception as e: | |
logging.error(f"Delete profile error: {str(e)}") | |
raise gr.Error(f"Error deleting profile: {str(e)}") | |
delete_btn.click( | |
fn=delete_profile, | |
inputs=[load_profile_dropdown, session_token], | |
outputs=[output_summary, load_profile_dropdown] | |
).then( | |
fn=lambda: gr.update( | |
choices=profile_manager.list_profiles(session_token.value), | |
visible=bool(profile_manager.list_profiles(session_token.value)) | |
), | |
outputs=load_profile_dropdown | |
).then( | |
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))), | |
outputs=load_btn | |
).then( | |
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))), | |
outputs=delete_btn | |
) | |
# Clear form | |
clear_btn.click( | |
fn=lambda: [gr.update(value="") for _ in range(12)], | |
outputs=[ | |
name, age, interests, | |
movie, movie_reason, show, show_reason, | |
book, book_reason, character, character_reason, | |
blog_text | |
] | |
).then( | |
fn=lambda: gr.update(value=""), | |
outputs=output_summary | |
).then( | |
fn=lambda: gr.update(value=False), | |
outputs=blog_checkbox | |
).then( | |
fn=lambda: gr.update(visible=False), | |
outputs=blog_text | |
) | |
# ===== TAB 5: AI Teaching Assistant ===== | |
with gr.Tab("AI Assistant", id=4) as tab5: | |
gr.Markdown("## Your Personalized Learning Assistant") | |
gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.") | |
# Chat interface with session token | |
chatbot = gr.ChatInterface( | |
fn=lambda msg, hist: teaching_assistant.generate_response(msg, hist, session_token.value), | |
examples=[ | |
"How should I study for my next math test?", | |
"What's my current GPA?", | |
"Show me my course history", | |
"How can I improve my grades in science?", | |
"What study methods match my learning style?" | |
], | |
title="" | |
) | |
# Tab navigation logic with completion check | |
def navigate_to_tab(tab_index: int, tab_completed_status): | |
current_tab = tabs.selected | |
# Allow backward navigation | |
if tab_index <= current_tab: | |
return gr.Tabs(selected=tab_index), gr.update(visible=False) | |
# Check if current tab is completed | |
if not tab_completed_status.get(current_tab, False): | |
return ( | |
gr.Tabs(selected=current_tab), | |
gr.update(value=f"⚠️ Complete Step {current_tab+1} first!", visible=True)) | |
return gr.Tabs(selected=tab_index), gr.update(visible=False) | |
step1.click( | |
fn=lambda idx, status: navigate_to_tab(idx, status), | |
inputs=[gr.State(0), tab_completed], | |
outputs=[tabs, nav_message] | |
) | |
step2.click( | |
fn=lambda idx, status: navigate_to_tab(idx, status), | |
inputs=[gr.State(1), tab_completed], | |
outputs=[tabs, nav_message] | |
) | |
step3.click( | |
fn=lambda idx, status: navigate_to_tab(idx, status), | |
inputs=[gr.State(2), tab_completed], | |
outputs=[tabs, nav_message] | |
) | |
step4.click( | |
fn=lambda idx, status: navigate_to_tab(idx, status), | |
inputs=[gr.State(3), tab_completed], | |
outputs=[tabs, nav_message] | |
) | |
step5.click( | |
fn=lambda idx, status: navigate_to_tab(idx, status), | |
inputs=[gr.State(4), tab_completed], | |
outputs=[tabs, nav_message] | |
) | |
# Model loading functions | |
def load_selected_model(model_name, progress=gr.Progress()): | |
try: | |
model_loader.load_model(model_name, progress) | |
if model_loader.loaded: | |
return gr.update(value=f"<div class='alert-box'>{model_name} loaded successfully!</div>", visible=True) | |
else: | |
return gr.update(value=f"<div class='nav-message'>Failed to load model: {model_loader.error}</div>", visible=True) | |
except Exception as e: | |
logging.error(f"Model loading error: {str(e)}") | |
return gr.update(value=f"<div class='nav-message'>Error: {str(e)}</div>", visible=True) | |
load_model_btn.click( | |
fn=load_selected_model, | |
inputs=model_selector, | |
outputs=model_status | |
) | |
return app | |
# Create the interface | |
app = create_interface() | |
# For Hugging Face Spaces deployment | |
if __name__ == "__main__": | |
app.launch() | |