File size: 11,030 Bytes
328b44a
1d5a1b0
 
f809b13
1d5a1b0
f809b13
e34ea28
f809b13
794a977
e34ea28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5a1b0
 
f809b13
 
 
1d5a1b0
f809b13
 
1d5a1b0
ea801f3
 
 
 
 
 
 
 
ffbc55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34ea28
 
ffbc55b
 
 
 
 
 
 
 
 
 
 
ea801f3
ffbc55b
e34ea28
 
 
 
 
 
ea801f3
ffbc55b
ea801f3
 
 
1d5a1b0
f809b13
ef2f775
ffbc55b
794a977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffbc55b
794a977
 
7c9f1a1
ef2f775
f809b13
aa96e64
f809b13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373d965
f809b13
373d965
f809b13
 
 
373d965
f809b13
 
373d965
f809b13
 
 
 
 
373d965
f809b13
 
373d965
f809b13
 
 
 
 
e34ea28
 
 
 
 
 
 
 
 
 
 
794a977
f809b13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
794a977
f809b13
 
 
 
 
 
 
 
 
 
 
 
 
 
e34ea28
f809b13
 
 
 
 
3957ec0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict

# ========== TRANSCRIPT PARSING FUNCTIONS (UPDATED) ==========
def extract_courses_with_grade_levels(text):
    grade_level_pattern = r"(Grade|Year)\s*[:]?\s*(\d+|Freshman|Sophomore|Junior|Senior)"
    grade_match = re.search(grade_level_pattern, text, re.IGNORECASE)
    current_grade_level = grade_match.group(2) if grade_match else "Unknown"

    course_pattern = r"""
        (?:^|\n)
        (?: (Grade|Year)\s*[:]?\s*(\d+|Freshman|Sophomore|Junior|Senior)\s*[\n-]* )?
        (
            (?:[A-Z]{2,}\s?\d{3})
            |
            [A-Z][a-z]+(?:\s[A-Z][a-z]+)*
        )
        \s*
        (?: [:\-]?\s* ([A-F][+-]?|\d{2,3}%)? )?
    """

    courses_by_grade = defaultdict(list)
    current_grade = current_grade_level

    for match in re.finditer(course_pattern, text, re.VERBOSE | re.MULTILINE):
        grade_context, grade_level, course, grade = match.groups()

        if grade_context:
            current_grade = grade_level

        if course:
            course_info = {"course": course.strip()}
            if grade:
                course_info["grade"] = grade.strip()
            courses_by_grade[current_grade].append(course_info)

    return dict(courses_by_grade)

def parse_transcript(file):
    if file.name.endswith('.csv'):
        df = pd.read_csv(file)
    elif file.name.endswith('.xlsx'):
        df = pd.read_excel(file)
    elif file.name.endswith('.pdf'):
        text = ''
        reader = PdfReader(file)
        for page in reader.pages:
            page_text = page.extract_text()
            if page_text:
                text += page_text + '\n'

        # Grade level extraction
        grade_match = re.search(r'(Grade|Year)[\s:]*(\d+|Freshman|Sophomore|Junior|Senior)', text, re.IGNORECASE)
        grade_level = grade_match.group(2) if grade_match else "Unknown"

        # Enhanced GPA extraction
        gpa_data = {'weighted': "N/A", 'unweighted': "N/A"}
        gpa_patterns = [
            r'Weighted GPA[\s:]*(\d\.\d{1,2})',
            r'GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
            r'Cumulative GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
            r'Unweighted GPA[\s:]*(\d\.\d{1,2})',
            r'GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
            r'Cumulative GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
            r'GPA[\s:]*(\d\.\d{1,2})'
        ]
        for pattern in gpa_patterns:
            for match in re.finditer(pattern, text, re.IGNORECASE):
                gpa_value = match.group(1)
                if 'weighted' in pattern.lower():
                    gpa_data['weighted'] = gpa_value
                elif 'unweighted' in pattern.lower():
                    gpa_data['unweighted'] = gpa_value
                else:
                    if gpa_data['unweighted'] == "N/A":
                        gpa_data['unweighted'] = gpa_value
                    if gpa_data['weighted'] == "N/A":
                        gpa_data['weighted'] = gpa_value

        courses_by_grade = extract_courses_with_grade_levels(text)

        output_text = f"Grade Level: {grade_level}\n\n"
        if gpa_data['weighted'] != "N/A" or gpa_data['unweighted'] != "N/A":
            output_text += "GPA Information:\n"
            if gpa_data['unweighted'] != "N/A":
                output_text += f"- Unweighted GPA: {gpa_data['unweighted']}\n"
            if gpa_data['weighted'] != "N/A":
                output_text += f"- Weighted GPA: {gpa_data['weighted']}\n"
        else:
            output_text += "No GPA information found\n"

        output_text += "\nCourses by Grade Level:\n"
        for level, courses in courses_by_grade.items():
            output_text += f"\nGrade {level}:\n"
            for course in courses:
                output_text += f"- {course['course']}"
                if 'grade' in course:
                    output_text += f" (Grade: {course['grade']})"
                output_text += "\n"

        return output_text, {
            "gpa": gpa_data,
            "grade_level": grade_level,
            "courses": courses_by_grade
        }
    else:
        return "Unsupported file format", None

    # For CSV/XLSX fallback
    gpa = "N/A"
    for col in ['GPA', 'Grade Point Average', 'Cumulative GPA']:
        if col in df.columns:
            gpa = df[col].iloc[0] if isinstance(df[col].iloc[0], (float, int)) else "N/A"
            break

    grade_level = "N/A"
    for col in ['Grade Level', 'Grade', 'Class', 'Year']:
        if col in df.columns:
            grade_level = df[col].iloc[0]
            break

    courses = []
    for col in ['Course', 'Subject', 'Course Name', 'Class']:
        if col in df.columns:
            courses = df[col].tolist()
            break

    output_text = f"Grade Level: {grade_level}\nGPA: {gpa}\n\nCourses:\n"
    output_text += "\n".join(f"- {course}" for course in courses)

    return output_text, {
        "gpa": {"unweighted": gpa, "weighted": "N/A"},
        "grade_level": grade_level,
        "courses": courses
    }

# ========== LEARNING STYLE QUIZ FUNCTION ==========

def learning_style_quiz(*answers):
    visual = answers.count("I remember something better when I see it written down.")
    auditory = answers.count("I remember best by listening to a lecture or a recording.")
    reading = answers.count("I remember best by reading information on my own.")

    styles = {"Visual": visual, "Auditory": auditory, "Reading/Writing": reading}
    top_styles = [k for k, v in styles.items() if v == max(styles.values())]
    result = ", ".join(top_styles)
    return result

# ========== SAVE STUDENT PROFILE FUNCTION ==========

def save_profile(name, age, interests, transcript, learning_style, favorites, blog):
    data = {
        "name": name,
        "age": age,
        "interests": interests,
        "transcript": transcript,
        "learning_style": learning_style,
        "favorites": favorites,
        "blog": blog
    }
    os.makedirs("student_profiles", exist_ok=True)
    json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
    with open(json_path, "w") as f:
        json.dump(data, f, indent=2)

    markdown_summary = f"""### Student Profile: {name}

**Age:** {age}  
**Interests:** {interests}  
**Learning Style:** {learning_style}  

#### Transcript:
{transcript_display(transcript)}

#### Favorites:
- Movie: {favorites['movie']} ({favorites['movie_reason']})
- Show: {favorites['show']} ({favorites['show_reason']})
- Book: {favorites['book']} ({favorites['book_reason']})
- Character: {favorites['character']} ({favorites['character_reason']})

#### Blog:
{blog if blog else "_No blog provided_"}
"""
    return markdown_summary

def transcript_display(transcript_dict):
    if not transcript_dict:
        return "No transcript uploaded."
    if isinstance(transcript_dict, dict) and all(isinstance(v, list) for v in transcript_dict.values()):
        display = ""
        for grade_level, courses in transcript_dict.items():
            display += f"\n**Grade {grade_level}**\n"
            for course in courses:
                display += f"- {course['course']}"
                if 'grade' in course:
                    display += f" (Grade: {course['grade']})"
                display += "\n"
        return display
    return "\n".join([f"- {course}" for course in transcript_dict["courses"]] +
                     [f"Grade Level: {transcript_dict['grade_level']}", f"GPA: {transcript_dict['gpa']}"])

# ========== GRADIO INTERFACE ==========

with gr.Blocks() as app:
    with gr.Tab("Step 1: Upload Transcript"):
        transcript_file = gr.File(label="Upload your transcript (CSV, Excel, or PDF)")
        transcript_output = gr.Textbox(label="Transcript Output")
        transcript_data = gr.State()
        transcript_file.change(fn=parse_transcript, inputs=transcript_file, outputs=[transcript_output, transcript_data])

    with gr.Tab("Step 2: Learning Style Quiz"):
        q1 = gr.Radio(choices=[
            "I remember something better when I see it written down.",
            "I remember best by listening to a lecture or a recording.",
            "I remember best by reading information on my own."
        ], label="1. How do you best remember information?")
        q2 = gr.Radio(choices=q1.choices, label="2. What’s your preferred study method?")
        q3 = gr.Radio(choices=q1.choices, label="3. What helps you understand new topics?")
        q4 = gr.Radio(choices=q1.choices, label="4. How do you prefer to take notes?")
        q5 = gr.Radio(choices=q1.choices, label="5. When you visualize concepts, what helps most?")
        learning_output = gr.Textbox(label="Learning Style Result")
        gr.Button("Submit Quiz").click(learning_style_quiz, inputs=[q1, q2, q3, q4, q5], outputs=learning_output)

    with gr.Tab("Step 3: Personal Questions"):
        name = gr.Textbox(label="What's your name?")
        age = gr.Number(label="How old are you?")
        interests = gr.Textbox(label="What are your interests?")
        movie = gr.Textbox(label="Favorite movie?")
        movie_reason = gr.Textbox(label="Why do you like that movie?")
        show = gr.Textbox(label="Favorite TV show?")
        show_reason = gr.Textbox(label="Why do you like that show?")
        book = gr.Textbox(label="Favorite book?")
        book_reason = gr.Textbox(label="Why do you like that book?")
        character = gr.Textbox(label="Favorite character?")
        character_reason = gr.Textbox(label="Why do you like that character?")
        blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
        blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
        blog_checkbox.change(fn=lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text)

    with gr.Tab("Step 4: Save & Review"):
        output_summary = gr.Markdown()
        save_btn = gr.Button("Save Profile")

        def gather_and_save(name, age, interests, movie, movie_reason, show, show_reason,
                            book, book_reason, character, character_reason, blog, transcript, learning_style):
            favorites = {
                "movie": movie,
                "movie_reason": movie_reason,
                "show": show,
                "show_reason": show_reason,
                "book": book,
                "book_reason": book_reason,
                "character": character,
                "character_reason": character_reason,
            }
            return save_profile(name, age, interests, transcript, learning_style, favorites, blog)

        save_btn.click(fn=gather_and_save,
                       inputs=[name, age, interests, movie, movie_reason, show, show_reason,
                               book, book_reason, character, character_reason, blog_text,
                               transcript_data, learning_output],
                       outputs=output_summary)

app.launch()