File size: 15,034 Bytes
328b44a
1d5a1b0
 
f809b13
1d5a1b0
f809b13
e34ea28
 
d8684a1
38fde1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5a1b0
38fde1b
 
 
 
 
f809b13
 
1d5a1b0
ea801f3
 
 
 
 
 
 
 
38fde1b
ffbc55b
 
 
 
38fde1b
ffbc55b
 
38fde1b
ffbc55b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38fde1b
 
ffbc55b
 
 
 
 
 
 
 
 
 
38fde1b
 
ea801f3
ffbc55b
38fde1b
 
ea801f3
1d5a1b0
38fde1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef2f775
3b40922
 
 
 
 
 
38fde1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b40922
 
 
 
 
 
 
38fde1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b40922
 
 
 
 
 
 
 
 
 
38fde1b
3b40922
38fde1b
3b40922
38fde1b
3b40922
38fde1b
3b40922
38fde1b
3b40922
 
38fde1b
3b40922
 
 
38fde1b
3b40922
38fde1b
3b40922
38fde1b
c14dbee
38fde1b
 
 
 
 
 
 
 
 
f809b13
 
 
 
 
 
 
 
 
 
 
 
 
d8684a1
38fde1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8684a1
f809b13
 
 
38fde1b
f809b13
 
38fde1b
f809b13
 
38fde1b
3b40922
 
38fde1b
 
 
3b40922
38fde1b
3b40922
 
 
 
 
f809b13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38fde1b
f809b13
38fde1b
 
f809b13
38fde1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
794a977
3957ec0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict

# ========== TRANSCRIPT PARSING FUNCTIONS ==========
def extract_courses_with_grade_levels(text):
    grade_level_pattern = r"(Grade|Year)\s*[:]?\s*(\d+|Freshman|Sophomore|Junior|Senior)"
    grade_match = re.search(grade_level_pattern, text, re.IGNORECASE)
    current_grade_level = grade_match.group(2) if grade_match else "Unknown"

    course_pattern = r"""
        (?:^|\n)
        (?: (Grade|Year)\s*[:]?\s*(\d+|Freshman|Sophomore|Junior|Senior)\s*[\n-]* )?
        (
            (?:[A-Z]{2,}\s?\d{3})
            |
            [A-Z][a-z]+(?:\s[A-Z][a-z]+)*
        )
        \s*
        (?: [:\-]?\s* ([A-F][+-]?|\d{2,3}%)? )?
    """

    courses_by_grade = defaultdict(list)
    current_grade = current_grade_level

    for match in re.finditer(course_pattern, text, re.VERBOSE | re.MULTILINE):
        grade_context, grade_level, course, grade = match.groups()

        if grade_context:
            current_grade = grade_level

        if course:
            course_info = {"course": course.strip()}
            if grade:
                course_info["grade"] = grade.strip()
            courses_by_grade[current_grade].append(course_info)

    return dict(courses_by_grade)

def parse_transcript(file):
    if file.name.endswith('.csv'):
        df = pd.read_csv(file)
    elif file.name.endswith('.xlsx'):
        df = pd.read_excel(file)
    elif file.name.endswith('.pdf'):
        text = ''
        reader = PdfReader(file)
        for page in reader.pages:
            page_text = page.extract_text()
            if page_text:
                text += page_text + '\n'

        # Grade level extraction
        grade_match = re.search(r'(Grade|Year)[\s:]*(\d+|Freshman|Sophomore|Junior|Senior)', text, re.IGNORECASE)
        grade_level = grade_match.group(2) if grade_match else "Unknown"

        # Enhanced GPA extraction
        gpa_data = {'weighted': "N/A", 'unweighted': "N/A"}
        gpa_patterns = [
            r'Weighted GPA[\s:]*(\d\.\d{1,2})',
            r'GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
            r'Cumulative GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
            r'Unweighted GPA[\s:]*(\d\.\d{1,2})',
            r'GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
            r'Cumulative GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
            r'GPA[\s:]*(\d\.\d{1,2})'
        ]
        for pattern in gpa_patterns:
            for match in re.finditer(pattern, text, re.IGNORECASE):
                gpa_value = match.group(1)
                if 'weighted' in pattern.lower():
                    gpa_data['weighted'] = gpa_value
                elif 'unweighted' in pattern.lower():
                    gpa_data['unweighted'] = gpa_value
                else:
                    if gpa_data['unweighted'] == "N/A":
                        gpa_data['unweighted'] = gpa_value
                    if gpa_data['weighted'] == "N/A":
                        gpa_data['weighted'] = gpa_value

        courses_by_grade = extract_courses_with_grade_levels(text)

        output_text = f"Grade Level: {grade_level}\n\n"
        if gpa_data['weighted'] != "N/A" or gpa_data['unweighted'] != "N/A":
            output_text += "GPA Information:\n"
            if gpa_data['unweighted'] != "N/A":
                output_text += f"- Unweighted GPA: {gpa_data['unweighted']}\n"
            if gpa_data['weighted'] != "N/A":
                output_text += f"- Weighted GPA: {gpa_data['weighted']}\n"
        else:
            output_text += "No GPA information found\n"

        output_text += "\n(Courses not shown here)"

        return output_text, {
            "gpa": gpa_data,
            "grade_level": grade_level,
            "courses": courses_by_grade
        }
    else:
        return "Unsupported file format", None

    # For CSV/XLSX fallback
    gpa = "N/A"
    for col in ['GPA', 'Grade Point Average', 'Cumulative GPA']:
        if col in df.columns:
            gpa = df[col].iloc[0] if isinstance(df[col].iloc[0], (float, int)) else "N/A"
            break

    grade_level = "N/A"
    for col in ['Grade Level', 'Grade', 'Class', 'Year']:
        if col in df.columns:
            grade_level = df[col].iloc[0]
            break

    courses = []
    for col in ['Course', 'Subject', 'Course Name', 'Class']:
        if col in df.columns:
            courses = df[col].tolist()
            break

    output_text = f"Grade Level: {grade_level}\nGPA: {gpa}\n\nCourses:\n"
    output_text += "\n".join(f"- {course}" for course in courses)

    return output_text, {
        "gpa": {"unweighted": gpa, "weighted": "N/A"},
        "grade_level": grade_level,
        "courses": courses
    }

# ========== LEARNING STYLE QUIZ ==========
learning_style_questions = [
    "When you study for a test, you prefer to:",
    "When you need directions to a new place, you prefer:",
    "When you learn a new skill, you prefer to:",
    "When you're trying to concentrate, you:",
    "When you meet new people, you remember them by:",
    "When you're relaxing, you prefer to:",
    "When you're explaining something to someone, you:",
    "When you're trying to remember something, you:",
    "When you're in a classroom, you learn best when:",
    "When you're trying to solve a problem, you:",
    "When you're taking notes, you:",
    "When you're learning new software, you prefer to:",
    "When you're at a museum, you spend the most time:",
    "When you're assembling furniture, you:",
    "When you're learning new vocabulary, you:",
    "When you're giving a presentation, you prefer:",
    "When you're at a party, you enjoy:",
    "When you're taking a break from studying, you:",
    "When you're learning dance moves, you:",
    "When you're choosing a book, you prefer:"
]

learning_style_options = [
    ["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
    ["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
    ["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
    ["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
    ["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
    ["Read (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Do something active (Kinesthetic)"],
    ["Write it down (Reading/Writing)", "Tell them verbally (Auditory)", "Show them (Visual)", "Demonstrate physically (Kinesthetic)"],
    ["See it written down (Visual)", "Say it out loud (Auditory)", "Write it down (Reading/Writing)", "Do it physically (Kinesthetic)"],
    ["Reading materials (Reading/Writing)", "Listening to lectures (Auditory)", "Seeing diagrams (Visual)", "Doing hands-on activities (Kinesthetic)"],
    ["Write down steps (Reading/Writing)", "Talk through it (Auditory)", "Draw diagrams (Visual)", "Try different approaches (Kinesthetic)"],
    ["Write detailed notes (Reading/Writing)", "Record lectures (Auditory)", "Draw mind maps (Visual)", "Take minimal notes (Kinesthetic)"],
    ["Read the manual (Reading/Writing)", "Have someone explain it (Auditory)", "Watch tutorial videos (Visual)", "Just start using it (Kinesthetic)"],
    ["Reading descriptions (Reading/Writing)", "Listening to audio guides (Auditory)", "Looking at exhibits (Visual)", "Interactive displays (Kinesthetic)"],
    ["Read instructions first (Reading/Writing)", "Ask someone to help (Auditory)", "Look at diagrams (Visual)", "Start assembling (Kinesthetic)"],
    ["Write them repeatedly (Reading/Writing)", "Say them repeatedly (Auditory)", "Use flashcards (Visual)", "Use them in conversation (Kinesthetic)"],
    ["Having detailed notes (Reading/Writing)", "Speaking freely (Auditory)", "Using visual aids (Visual)", "Demonstrating something (Kinesthetic)"],
    ["Conversations (Auditory)", "People-watching (Visual)", "Dancing/games (Kinesthetic)", "Reading about people (Reading/Writing)"],
    ["Read for fun (Reading/Writing)", "Listen to music (Auditory)", "Watch videos (Visual)", "Exercise (Kinesthetic)"],
    ["Watch demonstrations (Visual)", "Listen to instructions (Auditory)", "Read choreography (Reading/Writing)", "Try the moves (Kinesthetic)"],
    ["Text-heavy books (Reading/Writing)", "Audiobooks (Auditory)", "Books with pictures (Visual)", "Interactive books (Kinesthetic)"]
]

def learning_style_quiz(*answers):
    scores = {
        "Visual": 0,
        "Auditory": 0,
        "Reading/Writing": 0,
        "Kinesthetic": 0
    }
    
    # Map each answer to a learning style
    for i, answer in enumerate(answers):
        if answer in learning_style_options[i][0]:
            scores["Reading/Writing"] += 1
        elif answer in learning_style_options[i][1]:
            scores["Auditory"] += 1
        elif answer in learning_style_options[i][2]:
            scores["Visual"] += 1
        elif answer in learning_style_options[i][3]:
            scores["Kinesthetic"] += 1
    
    # Get the highest score(s)
    max_score = max(scores.values())
    dominant_styles = [style for style, score in scores.items() if score == max_score]
    
    # Generate result
    if len(dominant_styles) == 1:
        result = f"Your primary learning style is: {dominant_styles[0]}"
    else:
        result = f"You have multiple strong learning styles: {', '.join(dominant_styles)}"
    
    # Add detailed breakdown
    result += "\n\nDetailed Scores:\n"
    for style, score in sorted(scores.items(), key=lambda x: x[1], reverse=True):
        result += f"{style}: {score}/20\n"
    
    return result

# ========== SAVE STUDENT PROFILE FUNCTION ==========
def save_profile(name, age, interests, transcript, learning_style, favorites, blog):
    data = {
        "name": name,
        "age": age,
        "interests": interests,
        "transcript": transcript,
        "learning_style": learning_style,
        "favorites": favorites,
        "blog": blog
    }
    os.makedirs("student_profiles", exist_ok=True)
    json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
    with open(json_path, "w") as f:
        json.dump(data, f, indent=2)

    markdown_summary = f"""### Student Profile: {name}
**Age:** {age}  
**Interests:** {interests}  
**Learning Style:** {learning_style}  
#### Transcript:
{transcript_display(transcript)}
#### Favorites:
- Movie: {favorites['movie']} ({favorites['movie_reason']})
- Show: {favorites['show']} ({favorites['show_reason']})
- Book: {favorites['book']} ({favorites['book_reason']})
- Character: {favorites['character']} ({favorites['character_reason']})
#### Blog:
{blog if blog else "_No blog provided_"}
"""
    return markdown_summary

def transcript_display(transcript_dict):
    if not transcript_dict:
        return "No transcript uploaded."
    if isinstance(transcript_dict, dict) and all(isinstance(v, list) for v in transcript_dict.values()):
        display = ""
        for grade_level, courses in transcript_dict.items():
            display += f"\n**Grade {grade_level}**\n"
            for course in courses:
                display += f"- {course['course']}"
                if 'grade' in course:
                    display += f" (Grade: {course['grade']})"
                display += "\n"
        return display
    return "\n".join([f"- {course}" for course in transcript_dict["courses"]] +
                     [f"Grade Level: {transcript_dict['grade_level']}", f"GPA: {transcript_dict['gpa']}"])

# ========== GRADIO INTERFACE ==========
with gr.Blocks() as app:
    with gr.Tab("Step 1: Upload Transcript"):
        transcript_file = gr.File(label="Upload your transcript (CSV, Excel, or PDF)")
        transcript_output = gr.Textbox(label="Transcript Output")
        transcript_data = gr.State()
        transcript_file.change(fn=parse_transcript, inputs=transcript_file, outputs=[transcript_output, transcript_data])

    with gr.Tab("Step 2: Learning Style Quiz"):
        gr.Markdown("### Complete this 20-question quiz to determine your learning style")
        quiz_components = []
        for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
            quiz_components.append(
                gr.Radio(choices=options, label=f"{i+1}. {question}")
            )
        
        learning_output = gr.Textbox(label="Learning Style Result", lines=5)
        gr.Button("Submit Quiz").click(
            learning_style_quiz,
            inputs=quiz_components,
            outputs=learning_output
        )

    with gr.Tab("Step 3: Personal Questions"):
        name = gr.Textbox(label="What's your name?")
        age = gr.Number(label="How old are you?")
        interests = gr.Textbox(label="What are your interests?")
        movie = gr.Textbox(label="Favorite movie?")
        movie_reason = gr.Textbox(label="Why do you like that movie?")
        show = gr.Textbox(label="Favorite TV show?")
        show_reason = gr.Textbox(label="Why do you like that show?")
        book = gr.Textbox(label="Favorite book?")
        book_reason = gr.Textbox(label="Why do you like that book?")
        character = gr.Textbox(label="Favorite character?")
        character_reason = gr.Textbox(label="Why do you like that character?")
        blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
        blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
        blog_checkbox.change(fn=lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text)

    with gr.Tab("Step 4: Save & Review"):
        output_summary = gr.Markdown()
        save_btn = gr.Button("Save Profile")

        def gather_and_save(name, age, interests, movie, movie_reason, show, show_reason,
                          book, book_reason, character, character_reason, blog, transcript, learning_style):
            favorites = {
                "movie": movie,
                "movie_reason": movie_reason,
                "show": show,
                "show_reason": show_reason,
                "book": book,
                "book_reason": book_reason,
                "character": character,
                "character_reason": character_reason,
            }
            return save_profile(name, age, interests, transcript, learning_style, favorites, blog)

        save_btn.click(fn=gather_and_save,
                     inputs=[name, age, interests, movie, movie_reason, show, show_reason,
                            book, book_reason, character, character_reason, blog_text,
                            transcript_data, learning_output],
                     outputs=output_summary)

app.launch()