|
import gradio as gr
|
|
import numpy as np
|
|
import cv2
|
|
from fastapi import FastAPI, Request, Response
|
|
from src.body import Body
|
|
|
|
body_estimation = Body('model/body_pose_model.pth')
|
|
|
|
def pil2cv(image):
|
|
''' PIL型 -> OpenCV型 '''
|
|
new_image = np.array(image, dtype=np.uint8)
|
|
if new_image.ndim == 2:
|
|
pass
|
|
elif new_image.shape[2] == 3:
|
|
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
|
|
elif new_image.shape[2] == 4:
|
|
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGBA2BGRA)
|
|
return new_image
|
|
|
|
with open("static/poseEditor.js", "r") as f:
|
|
file_contents = f.read()
|
|
|
|
app = FastAPI()
|
|
|
|
@app.middleware("http")
|
|
async def some_fastapi_middleware(request: Request, call_next):
|
|
path = request.scope['path']
|
|
response = await call_next(request)
|
|
|
|
if path == "/":
|
|
response_body = ""
|
|
async for chunk in response.body_iterator:
|
|
response_body += chunk.decode()
|
|
|
|
some_javascript = f"""
|
|
<script type="text/javascript" defer>
|
|
{file_contents}
|
|
</script>
|
|
"""
|
|
|
|
response_body = response_body.replace("</body>", some_javascript + "</body>")
|
|
|
|
del response.headers["content-length"]
|
|
|
|
return Response(
|
|
content=response_body,
|
|
status_code=response.status_code,
|
|
headers=dict(response.headers),
|
|
media_type=response.media_type
|
|
)
|
|
|
|
return response
|
|
|
|
|
|
def candidate_to_json_string(arr):
|
|
a = [f'[{x:.2f}, {y:.2f}]' for x, y, *_ in arr]
|
|
return '[' + ', '.join(a) + ']'
|
|
|
|
|
|
def subset_to_json_string(arr):
|
|
arr_str = ','.join(['[' + ','.join([f'{num:.2f}' for num in row]) + ']' for row in arr])
|
|
return '[' + arr_str + ']'
|
|
|
|
def estimate_body(source):
|
|
if source == None:
|
|
return None
|
|
|
|
candidate, subset = body_estimation(pil2cv(source))
|
|
return "{ \"candidate\": " + candidate_to_json_string(candidate) + ", \"subset\": " + subset_to_json_string(subset) + " }"
|
|
|
|
def image_changed(image):
|
|
if (image == None):
|
|
return {}, 512, 512
|
|
json = estimate_body(image)
|
|
return json, image.width, image.height
|
|
|
|
html_text = f"""
|
|
<canvas id="canvas" width="512" height="512"></canvas>
|
|
<script type="text/javascript" defer>{file_contents}</script>
|
|
"""
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("""### Usage
|
|
|
|
Choose one of the following methods to edit the pose:
|
|
|
|
| Style | Description |
|
|
| -----------------| ----------------------------------------------------------------------------------------- |
|
|
| Pose recognition | Upload an image and click "Start edit". |
|
|
| Input json | Input json to "Json source" and click "Input Json", edit the width/height, then click "Start edit". |
|
|
| Free style | Edit the width/height, then click "Start edit". |
|
|
|
|
To save the pose image, click "Save".
|
|
To export the pose data, click "Save" and "Copy to clipboard" of "Json" section.
|
|
""")
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
source = gr.Image(type="pil")
|
|
width = gr.Slider(label="Width", mininmum=512, maximum=1024, step=64, value=512, key="Width", interactive=True)
|
|
height = gr.Slider(label="Height", mininmum=512, maximum=1024, step=64, value=512, key="Height", interactive=True)
|
|
startBtn = gr.Button(value="Start edit")
|
|
json = gr.JSON(label="Json", lines=10)
|
|
jsonInput = gr.Textbox(label="Json source", lines=10)
|
|
jsonInputBtn = gr.Button(value="Input Json")
|
|
with gr.Column(scale=2):
|
|
html = gr.HTML(html_text)
|
|
saveBtn = gr.Button(value="Save")
|
|
gr.HTML("<ul><li>ctrl + drag to scale</li><li>alt + drag to translate</li><li>shift + drag to rotate(move right first, then up or down)</li></ul>")
|
|
|
|
source.change(
|
|
fn = image_changed,
|
|
inputs = [source],
|
|
outputs = [json, width, height])
|
|
startBtn.click(
|
|
fn = None,
|
|
inputs = [json, width, height],
|
|
outputs = [],
|
|
_js="(json, w, h) => { initializePose(json,w,h); return []; }")
|
|
saveBtn.click(
|
|
fn = None,
|
|
inputs = [], outputs = [json],
|
|
_js="() => { return [savePose()]; }")
|
|
jsonInputBtn.click(
|
|
fn = lambda x: x,
|
|
inputs = [jsonInput], outputs = [json])
|
|
|
|
gr.mount_gradio_app(app, demo, path="/")
|
|
|