Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import MarianMTModel, MarianTokenizer
|
3 |
+
|
4 |
+
# Function to load the translation model
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model():
|
7 |
+
model_name = "Helsinki-NLP/opus-mt-any-to-en"
|
8 |
+
model = MarianMTModel.from_pretrained(model_name)
|
9 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
10 |
+
return model, tokenizer
|
11 |
+
|
12 |
+
# Translate the text to English
|
13 |
+
def translate_to_english(text, model, tokenizer):
|
14 |
+
inputs = tokenizer.encode(text, return_tensors="pt", padding=True)
|
15 |
+
translated = model.generate(inputs, max_length=512)
|
16 |
+
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
17 |
+
return translated_text
|
18 |
+
|
19 |
+
# Streamlit UI setup
|
20 |
+
st.title("Language Translator to English")
|
21 |
+
st.write("Translate any language to English using Hugging Face models!")
|
22 |
+
|
23 |
+
# Text input field
|
24 |
+
input_text = st.text_area("Enter text in any language", "")
|
25 |
+
|
26 |
+
if input_text:
|
27 |
+
model, tokenizer = load_model()
|
28 |
+
translated_text = translate_to_english(input_text, model, tokenizer)
|
29 |
+
st.subheader("Translated Text:")
|
30 |
+
st.write(translated_text)
|