import pandas as pd import numpy as np import datetime def simulate_data(n=10, faults=True): today = datetime.date.today() poles = [f"Pole_{i+1:03}" for i in range(n)] data = [] for pole in poles: solar = round(np.random.uniform(3.0, 7.5), 2) wind = round(np.random.uniform(0.5, 2.0), 2) required = round(np.random.uniform(1.0, 1.5), 2) total = solar + wind cam = np.random.choice(['Online', 'Offline'], p=[0.85, 0.15]) if faults else "Online" tilt = round(np.random.uniform(0, 12), 1) vib = round(np.random.uniform(0.1, 2.5), 2) sufficient = "Yes" if total >= required else "No" anomaly = [] if faults: if solar < 4.0: anomaly.append("Low Solar Output") if wind < 0.7: anomaly.append("Low Wind Output") if tilt > 10: anomaly.append("Pole Tilt Risk") if vib > 2.0: anomaly.append("Vibration Alert") if cam == "Offline": anomaly.append("Camera Offline") if sufficient == "No": anomaly.append("Power Insufficient") alert = "Green" if len(anomaly) == 1: alert = "Yellow" elif len(anomaly) > 1: alert = "Red" data.append({ "Pole ID": pole, "Date": today, "Solar Gen (kWh)": solar, "Wind Gen (kWh)": wind, "Power Required (kWh)": required, "Power Sufficient": sufficient, "Camera Status": cam, "Tilt (°)": tilt, "Vibration (g)": vib, "Anomalies": "; ".join(anomaly) if anomaly else "None", "Alert Level": alert }) return pd.DataFrame(data)