Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,71 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import CLIPProcessor, CLIPModel
|
|
|
4 |
|
5 |
-
# Load
|
6 |
model_name = "patrickjohncyh/fashion-clip"
|
7 |
model = CLIPModel.from_pretrained(model_name)
|
8 |
processor = CLIPProcessor.from_pretrained(model_name)
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"""
|
12 |
-
|
13 |
"""
|
14 |
-
|
15 |
-
fashion_categories = ["Brand", "Category", "Gender", "Price Range"]
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
"Brand": "Gucci" if "Gucci" in user_query else "Unknown",
|
27 |
-
"Category": "Perfume" if "perfume" in user_query else "Unknown",
|
28 |
-
"Gender": "Men" if "men" in user_query else "Women" if "women" in user_query else "Unisex",
|
29 |
-
"Price Range": "Under 200 AED" if "under 200" in user_query else "Above 200 AED",
|
30 |
-
}
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Define Gradio UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
with gr.Blocks() as demo:
|
36 |
-
gr.Markdown("# 🛍️
|
37 |
-
|
38 |
query_input = gr.Textbox(label="Enter your search query", placeholder="e.g., Gucci men’s perfume under 200AED")
|
39 |
output_box = gr.JSON(label="Parsed Output")
|
40 |
|
41 |
parse_button = gr.Button("Parse Query")
|
42 |
parse_button.click(parse_query, inputs=[query_input], outputs=[output_box])
|
43 |
|
44 |
-
# Launch the app
|
45 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import CLIPProcessor, CLIPModel
|
4 |
+
import re
|
5 |
|
6 |
+
# Load FashionCLIP model
|
7 |
model_name = "patrickjohncyh/fashion-clip"
|
8 |
model = CLIPModel.from_pretrained(model_name)
|
9 |
processor = CLIPProcessor.from_pretrained(model_name)
|
10 |
|
11 |
+
# Price extraction regex
|
12 |
+
price_pattern = re.compile(r'(\bunder\b|\babove\b|\bbelow\b|\bbetween\b)?\s?(\d{1,5})\s?(AED|USD|EUR)?', re.IGNORECASE)
|
13 |
+
|
14 |
+
def get_text_embedding(text):
|
15 |
+
"""
|
16 |
+
Converts input text into an embedding using FashionCLIP.
|
17 |
+
"""
|
18 |
+
inputs = processor(text=[text], images=None, return_tensors="pt", padding=True)
|
19 |
+
with torch.no_grad():
|
20 |
+
text_embedding = model.get_text_features(**inputs)
|
21 |
+
return text_embedding
|
22 |
+
|
23 |
+
def extract_attributes(query):
|
24 |
"""
|
25 |
+
Extract structured fashion attributes dynamically using FashionCLIP.
|
26 |
"""
|
27 |
+
structured_output = {"Brand": "Unknown", "Category": "Unknown", "Gender": "Unknown", "Price": "Unknown"}
|
|
|
28 |
|
29 |
+
# Get embedding for the query
|
30 |
+
query_embedding = get_text_embedding(query)
|
31 |
|
32 |
+
# Compare with embeddings of common fashion attribute words (using FashionCLIP)
|
33 |
+
reference_labels = ["Brand", "Category", "Gender", "Price"]
|
34 |
+
reference_embeddings = get_text_embedding(reference_labels)
|
35 |
+
|
36 |
+
# Compute cosine similarity to classify the type of query
|
37 |
+
similarities = torch.nn.functional.cosine_similarity(query_embedding, reference_embeddings)
|
38 |
+
best_match_index = similarities.argmax().item()
|
39 |
|
40 |
+
# Assign type dynamically
|
41 |
+
attribute_type = reference_labels[best_match_index]
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Extract price dynamically
|
44 |
+
price_match = price_pattern.search(query)
|
45 |
+
if price_match:
|
46 |
+
condition, amount, currency = price_match.groups()
|
47 |
+
structured_output["Price"] = f"{condition.capitalize() if condition else ''} {amount} {currency if currency else 'AED'}".strip()
|
48 |
+
|
49 |
+
# Extract brand & category dynamically using FashionCLIP similarity
|
50 |
+
structured_output[attribute_type] = query # Assigning full query text to matched attribute
|
51 |
+
|
52 |
+
return structured_output
|
53 |
|
54 |
# Define Gradio UI
|
55 |
+
def parse_query(user_query):
|
56 |
+
"""
|
57 |
+
Takes user query and returns structured attributes dynamically.
|
58 |
+
"""
|
59 |
+
parsed_output = extract_attributes(user_query)
|
60 |
+
return parsed_output # Returns structured JSON
|
61 |
+
|
62 |
with gr.Blocks() as demo:
|
63 |
+
gr.Markdown("# 🛍️ Fashion Query Parser using FashionCLIP")
|
64 |
+
|
65 |
query_input = gr.Textbox(label="Enter your search query", placeholder="e.g., Gucci men’s perfume under 200AED")
|
66 |
output_box = gr.JSON(label="Parsed Output")
|
67 |
|
68 |
parse_button = gr.Button("Parse Query")
|
69 |
parse_button.click(parse_query, inputs=[query_input], outputs=[output_box])
|
70 |
|
|
|
71 |
demo.launch()
|