QueryAnalyzerV2 / app.py
DINGOLANI's picture
Update app.py
171a063 verified
raw
history blame
1.64 kB
import gradio as gr
import torch
from transformers import CLIPProcessor, CLIPModel
# Load the FashionCLIP model
model_name = "patrickjohncyh/fashion-clip"
model = CLIPModel.from_pretrained(model_name)
processor = CLIPProcessor.from_pretrained(model_name)
def parse_query(user_query):
"""
Parse fashion-related search queries into structured data.
"""
# Define categories relevant to luxury fashion search
fashion_categories = ["Brand", "Category", "Gender", "Price Range"]
# Format user query for CLIP
inputs = processor(text=[user_query], images=None, return_tensors="pt", padding=True)
# Get model embeddings
with torch.no_grad():
outputs = model.get_text_features(**inputs)
# Simulated parsing output (FashionCLIP itself does not generate structured JSON)
parsed_output = {
"Brand": "Gucci" if "Gucci" in user_query else "Unknown",
"Category": "Perfume" if "perfume" in user_query else "Unknown",
"Gender": "Men" if "men" in user_query else "Women" if "women" in user_query else "Unisex",
"Price Range": "Under 200 AED" if "under 200" in user_query else "Above 200 AED",
}
return parsed_output
# Define Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# 🛍️ Luxury Fashion Query Parser (FashionCLIP)")
query_input = gr.Textbox(label="Enter your search query", placeholder="e.g., Gucci men’s perfume under 200AED")
output_box = gr.JSON(label="Parsed Output")
parse_button = gr.Button("Parse Query")
parse_button.click(parse_query, inputs=[query_input], outputs=[output_box])
# Launch the app
demo.launch()