MahatirTusher commited on
Commit
971f77f
·
verified ·
1 Parent(s): 060acd8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -24
app.py CHANGED
@@ -9,25 +9,28 @@ import json
9
  # Load the model
10
  try:
11
  model = load_model('wound_classifier_model_googlenet.h5')
 
12
  except Exception as e:
13
- raise RuntimeError(f"Error loading model: {e}")
14
 
15
  # OpenRouter.ai Configuration
16
  OPENROUTER_API_KEY = "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"
17
  OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
18
- MODEL_NAME = "mistralai/mistral-small-24b-instruct-2501:free"
19
 
20
  input_shape = (224, 224, 3)
21
 
22
  def preprocess_image(image, target_size):
23
  """Preprocess the input image for the model."""
24
- if image is None:
25
- raise ValueError("No image provided")
26
- image = image.convert("RGB")
27
- image = image.resize(target_size)
28
- image_array = np.array(image)
29
- image_array = image_array / 255.0
30
- return image_array
 
 
31
 
32
  def get_medical_guidelines(wound_type):
33
  """Fetch medical guidelines using OpenRouter.ai's API."""
@@ -39,20 +42,37 @@ def get_medical_guidelines(wound_type):
39
  }
40
 
41
  prompt = f"""As a medical professional, provide detailed guidelines for treating a {wound_type} wound.
42
- Include first aid steps, precautions, and when to seek professional help."""
 
 
 
 
43
 
44
  data = {
45
  "model": MODEL_NAME,
46
  "messages": [{"role": "user", "content": prompt}],
47
- "temperature": 0.7
48
  }
49
 
50
  try:
51
- response = requests.post(OPENROUTER_API_URL, headers=headers, json=data)
 
52
  response.raise_for_status()
53
- return response.json()["choices"][0]["message"]["content"]
 
 
 
 
 
 
 
 
 
 
 
54
  except Exception as e:
55
- return f"Error fetching guidelines: {str(e)}"
 
56
 
57
  def predict(image):
58
  """Main prediction function."""
@@ -60,38 +80,51 @@ def predict(image):
60
  # Preprocess image
61
  input_data = preprocess_image(image, (input_shape[0], input_shape[1]))
62
  input_data = np.expand_dims(input_data, axis=0)
 
63
 
64
  # Load class labels
65
- with open('classes.txt', 'r') as file:
66
- class_labels = file.read().splitlines()
 
 
 
 
67
 
 
68
  if len(class_labels) != model.output_shape[-1]:
69
- raise ValueError("Class labels mismatch with model output")
70
 
71
  # Make prediction
72
  predictions = model.predict(input_data)
73
- results = {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}
 
 
 
74
  predicted_class = max(results, key=results.get)
 
75
 
76
  # Get medical guidelines
77
  guidelines = get_medical_guidelines(predicted_class)
 
78
 
79
- return results, guidelines # Return as tuple instead of dict
80
 
81
  except Exception as e:
82
- return {f"Error: {str(e)}"}, ""
 
83
 
84
  # Gradio Interface
85
  iface = gr.Interface(
86
  fn=predict,
87
- inputs=gr.Image(type="pil"),
88
  outputs=[
89
  gr.Label(num_top_classes=3, label="Classification Results"),
90
- gr.Textbox(label="Medical Guidelines", lines=5)
91
  ],
92
- live=True,
93
  title="Wound Classification & Treatment Advisor",
94
- description="Upload a wound image for classification and medical guidelines."
 
95
  )
96
 
97
  iface.launch(server_name="0.0.0.0", server_port=7860)
 
9
  # Load the model
10
  try:
11
  model = load_model('wound_classifier_model_googlenet.h5')
12
+ print("✅ Model loaded successfully")
13
  except Exception as e:
14
+ raise RuntimeError(f" Model loading failed: {e}")
15
 
16
  # OpenRouter.ai Configuration
17
  OPENROUTER_API_KEY = "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"
18
  OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
19
+ MODEL_NAME = "mistralai/mistral-7b-instruct" # Updated model name
20
 
21
  input_shape = (224, 224, 3)
22
 
23
  def preprocess_image(image, target_size):
24
  """Preprocess the input image for the model."""
25
+ try:
26
+ if image is None:
27
+ raise ValueError("No image provided")
28
+ image = image.convert("RGB")
29
+ image = image.resize(target_size)
30
+ return np.array(image) / 255.0
31
+ except Exception as e:
32
+ print(f"⚠️ Image preprocessing error: {e}")
33
+ raise
34
 
35
  def get_medical_guidelines(wound_type):
36
  """Fetch medical guidelines using OpenRouter.ai's API."""
 
42
  }
43
 
44
  prompt = f"""As a medical professional, provide detailed guidelines for treating a {wound_type} wound.
45
+ Include:
46
+ 1. First aid steps
47
+ 2. Precautions
48
+ 3. When to seek professional help
49
+ Output in markdown with clear sections."""
50
 
51
  data = {
52
  "model": MODEL_NAME,
53
  "messages": [{"role": "user", "content": prompt}],
54
+ "temperature": 0.5
55
  }
56
 
57
  try:
58
+ print(f"🚀 Sending request to OpenRouter API for {wound_type}...")
59
+ response = requests.post(OPENROUTER_API_URL, headers=headers, json=data, timeout=10)
60
  response.raise_for_status()
61
+
62
+ response_json = response.json()
63
+ print("🔧 Raw API response:", json.dumps(response_json, indent=2))
64
+
65
+ if "choices" not in response_json:
66
+ return "⚠️ API response format unexpected. Please check logs."
67
+
68
+ return response_json["choices"][0]["message"]["content"]
69
+
70
+ except requests.exceptions.HTTPError as e:
71
+ print(f"❌ HTTP Error: {e.response.status_code} - {e.response.text}")
72
+ return f"API Error: {e.response.status_code} - Check console for details"
73
  except Exception as e:
74
+ print(f"⚠️ General API error: {str(e)}")
75
+ return f"Error: {str(e)}"
76
 
77
  def predict(image):
78
  """Main prediction function."""
 
80
  # Preprocess image
81
  input_data = preprocess_image(image, (input_shape[0], input_shape[1]))
82
  input_data = np.expand_dims(input_data, axis=0)
83
+ print("🖼️ Image preprocessed successfully")
84
 
85
  # Load class labels
86
+ try:
87
+ with open('classes.txt', 'r') as file:
88
+ class_labels = file.read().splitlines()
89
+ print("📋 Class labels loaded:", class_labels)
90
+ except Exception as e:
91
+ raise RuntimeError(f"Class labels loading failed: {e}")
92
 
93
+ # Verify model compatibility
94
  if len(class_labels) != model.output_shape[-1]:
95
+ raise ValueError(f"Model expects {model.output_shape[-1]} classes, found {len(class_labels)}")
96
 
97
  # Make prediction
98
  predictions = model.predict(input_data)
99
+ print("📊 Raw predictions:", predictions)
100
+
101
+ results = {class_labels[i]: float(predictions[0][i])
102
+ for i in range(len(class_labels))}
103
  predicted_class = max(results, key=results.get)
104
+ print(f"🏆 Predicted class: {predicted_class}")
105
 
106
  # Get medical guidelines
107
  guidelines = get_medical_guidelines(predicted_class)
108
+ print("📜 Guidelines generated successfully")
109
 
110
+ return results, guidelines
111
 
112
  except Exception as e:
113
+ print(f"🔥 Critical error in prediction: {str(e)}")
114
+ return {"Error": str(e)}, ""
115
 
116
  # Gradio Interface
117
  iface = gr.Interface(
118
  fn=predict,
119
+ inputs=gr.Image(type="pil", label="Upload Wound Image"),
120
  outputs=[
121
  gr.Label(num_top_classes=3, label="Classification Results"),
122
+ gr.Markdown(label="Medical Guidelines")
123
  ],
124
+ live=False,
125
  title="Wound Classification & Treatment Advisor",
126
+ description="Upload a wound image for AI-powered classification and treatment guidelines.",
127
+ allow_flagging="never"
128
  )
129
 
130
  iface.launch(server_name="0.0.0.0", server_port=7860)