Spaces:
Sleeping
Sleeping
File size: 9,588 Bytes
58486c5 43ac004 7883913 43ac004 9030fbe 43ac004 7536e7a 43ac004 7536e7a 43ac004 7536e7a 43ac004 7536e7a 43ac004 7536e7a 43ac004 9030fbe 7536e7a 9030fbe 7536e7a 9030fbe 7536e7a 9030fbe 43ac004 9030fbe 43ac004 7536e7a 43ac004 7536e7a 43ac004 7536e7a 43ac004 9030fbe 43ac004 7536e7a 43ac004 7536e7a 43ac004 9030fbe 43ac004 7536e7a 43ac004 9030fbe 43ac004 9030fbe 43ac004 9030fbe 43ac004 7536e7a 43ac004 7536e7a 43ac004 7536e7a 43ac004 9030fbe 43ac004 9030fbe 43ac004 9030fbe 43ac004 7536e7a 9030fbe 74f5196 7536e7a 9030fbe 43ac004 cb8f33a 43ac004 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import os
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.memory import ConversationBufferMemory
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Lista de modelos públicos e leves
list_llm = ["EleutherAI/gpt-neo-125m", "distilbert/distilgpt2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Carregar e dividir documento PDF
def load_doc(list_file_path):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512, # Reduzido para acelerar a busca
chunk_overlap=32 # Menor sobreposição para menos processamento
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Criar banco de vetores
def create_db(splits):
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
# Inicializar o chain LLM local
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
tokenizer = AutoTokenizer.from_pretrained(llm_model)
model = AutoModelForCausalLM.from_pretrained(
llm_model,
device_map="auto", # Usa GPU se disponível
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, # Otimiza para GPU
trust_remote_code=True
)
# Pipeline otimizado
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=max_tokens,
temperature=temperature,
top_k=top_k,
do_sample=False, # Greedy decoding para mais velocidade
repetition_penalty=1.1,
return_full_text=False
)
llm = HuggingFacePipeline(pipeline=pipe)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
return_messages=True
)
retriever = vector_db.as_retriever(search_kwargs={"k": 2}) # Reduzir número de documentos retornados
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
# Inicializar banco de dados
def initialize_database(list_file_obj, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Database created!"
# Inicializar LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
print("llm_name: ", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "QA chain initialized. Chatbot is ready!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = "" # Menos referências para acelerar
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = 0
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file_obj.name
list_file_path.append(file_path)
return list_file_path
def demo():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. Optimized for speed without an API token. \
<b>Please do not upload confidential documents.</b>
""")
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
with gr.Row():
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
with gr.Row():
db_btn = gr.Button("Create vector database")
with gr.Row():
db_progress = gr.Textbox(value="Not initialized", show_label=False)
gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
with gr.Row():
with gr.Accordion("LLM input parameters", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness (ignored with greedy decoding)", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum=64, maximum=512, value=128, step=64, label="Max New Tokens", info="Maximum number of tokens to be generated", interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k", info="Number of tokens to select (ignored with greedy decoding)", interactive=True)
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
with gr.Row():
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
with gr.Column(scale=200):
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevant context from the source document", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Eventos de pré-processamento
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
# Eventos do chatbot
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |