DHEIVER commited on
Commit
6ae14d2
·
1 Parent(s): a424a30

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -2
app.py CHANGED
@@ -1,11 +1,24 @@
1
  import gradio as gr
2
  import tensorflow as tf
3
  import numpy as np
4
- import cv2
5
  from PIL import Image, ImageDraw, ImageFont
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # Carregue seu modelo TensorFlow treinado
8
- model = tf.keras.models.load_model('modelo_treinado.h5')
 
9
 
10
  # Defina uma função para fazer previsões
11
  def classify_image(input_image):
 
1
  import gradio as gr
2
  import tensorflow as tf
3
  import numpy as np
 
4
  from PIL import Image, ImageDraw, ImageFont
5
 
6
+ # Defina a camada personalizada FixedDropout
7
+ class FixedDropout(tf.keras.layers.Dropout):
8
+ def _get_noise_shape(self, inputs):
9
+ if self.noise_shape is None:
10
+ return self.noise_shape
11
+ symbolic_shape = tf.shape(inputs)
12
+ noise_shape = [symbolic_shape[axis] if shape is None else shape
13
+ for axis, shape in enumerate(self.noise_shape)]
14
+ return tuple(noise_shape)
15
+
16
+ # Registre a camada personalizada FixedDropout
17
+ tf.keras.utils.get_custom_objects()['FixedDropout'] = FixedDropout
18
+
19
  # Carregue seu modelo TensorFlow treinado
20
+ with tf.keras.utils.custom_object_scope({'FixedDropout': FixedDropout}):
21
+ model = tf.keras.models.load_model('modelo_treinado.h5')
22
 
23
  # Defina uma função para fazer previsões
24
  def classify_image(input_image):