File size: 1,269 Bytes
adf2111
 
 
 
73036df
5f0bbf5
7a80d19
73036df
adf2111
2283b5b
 
 
 
adf2111
2283b5b
73036df
e0ee69d
2283b5b
73036df
2283b5b
73036df
e0ee69d
73036df
adf2111
2283b5b
907b41c
adf2111
2283b5b
 
adf2111
 
2283b5b
907b41c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
import tensorflow as tf
import numpy as np

# Load your trained TensorFlow model
model = tf.keras.models.load_model('modelo_treinado.h5')  # Load your saved model

# Define a function to make predictions
def classify_image(input_image):
    # Redimensione a imagem para as dimensões corretas (192x256)
    input_image = tf.image.resize(input_image, (192, 256))  # Redimensione para as dimensões esperadas
    input_image = (input_image / 255.0)  # Normalize para [0, 1]
    input_image = np.expand_dims(input_image, axis=0)  # Adicione a dimensão de lote

    # Faça a previsão usando o modelo
    prediction = model.predict(input_image)

    # Assumindo que o modelo retorna probabilidades para duas classes, você pode retornar a classe com a maior probabilidade
    class_index = np.argmax(prediction)
    class_labels = ["Normal", "Cataract"]  # Substitua pelas suas etiquetas de classe reais
    predicted_class = class_labels[class_index]

    return predicted_class

# Crie uma interface Gradio
input_interface = gr.Interface(
    fn=classify_image,
    inputs="image",  # Especifique o tipo de entrada como "image"
    outputs="text"   # Especifique o tipo de saída como "text"
)

# Inicie o aplicativo Gradio
input_interface.launch()