Spaces:
Runtime error
Runtime error
File size: 1,660 Bytes
e77fe53 415b382 e77fe53 415b382 e77fe53 415b382 e77fe53 415b382 edd67ee e77fe53 edd67ee 69b4938 e77fe53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
# Load the feature extractor and model directly
extractor = AutoFeatureExtractor.from_pretrained("ALM-AHME/beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20")
model = AutoModelForImageClassification.from_pretrained("ALM-AHME/beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20")
# Define the prediction function using the loaded model
def classify_image(image):
# Preprocess the image and get the features
inputs = extractor(images=image, return_tensors="pt")
# Make the prediction using the model
outputs = model(**inputs)
logits = outputs.logits
# Get the predicted label and confidence
predicted_label = logits.argmax(dim=1).item()
confidence = logits.softmax(dim=1).max().item()
# Map predicted label to "benigno" or "maligno"
class_names = ["benigno", "maligno"]
predicted_class = class_names[predicted_label]
return {"prediction": predicted_class, "confidence": confidence}
# Define the Gradio interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.inputs.Image(),
outputs="json",
title="Classificação de Imagens de Câncer de Mama",
description="Este aplicativo classifica imagens de câncer de mama em diferentes classes.",
article="Este modelo é uma versão fine-tuned do microsoft/beit-large-patch16-224 no dataset imagefolder. Alcançou os seguintes resultados no conjunto de avaliação: Loss: 0.0275, Accuracy: 0.9939.",
)
# Launch the Gradio interface
if __name__ == "__main__":
iface.launch()
|