fast3r / scripts /fast3r_re10k_pose_eval.py
DDoggo's picture
Upload folder using huggingface_hub
2913579 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#!/usr/bin/env python3
"""
fast3r_re10k_pose_eval_multi_gpu.py
1) Root set to /home/jianingy/research/fast3r/src via rootutils.
2) Splits RealEstate10K test folders between 2 GPUs in parallel (by default).
3) Loads & runs DUSt3R model on each GPU, aggregates final results.
4) Allows evaluating only a subset of scene folders (via --subset_file).
5) Correctly parses RealEstate10K extrinsics as c2w.
"""
import os
import glob
import random
import time
import copy
import math
import json
from collections import defaultdict
from multiprocessing import get_context
import numpy as np
from numpy.linalg import inv
import torch
import hydra
import open3d as o3d
import trimesh
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm
# For CLI
import argparse
# Attempt pretty console table with 'rich'
try:
from rich.table import Table
from rich.console import Console
RICH_AVAILABLE = True
except ImportError:
RICH_AVAILABLE = False
# Rootutils: set project root => /home/jianingy/research/fast3r/src
import rootutils
rootutils.setup_root(
"/home/jianingy/research/fast3r/src",
indicator=".project-root", # or remove if not needed
pythonpath=True
)
# Project-specific imports
from fast3r.models.multiview_dust3r_module import MultiViewDUSt3RLitModule
from fast3r.dust3r.inference_multiview import inference
from fast3r.dust3r.model import FlashDUSt3R
from fast3r.dust3r.utils.image import rgb, imread_cv2
from fast3r.dust3r.datasets.utils.transforms import ImgNorm
import fast3r.dust3r.datasets.utils.cropping as cropping
from lightning.pytorch.utilities.deepspeed import convert_zero_checkpoint_to_fp32_state_dict
########################
# 1) Utility: fix old references in config
########################
def replace_dust3r_in_config(cfg):
for key, value in cfg.items():
if isinstance(value, dict):
replace_dust3r_in_config(value)
elif isinstance(value, str):
if "dust3r." in value and "fast3r.dust3r." not in value:
cfg[key] = value.replace("dust3r.", "fast3r.dust3r.")
return cfg
########################
# 2) Crop & Resize
########################
def crop_resize_if_necessary(
image,
intrinsics_3x3,
target_resolution=(512, 288),
rng=None,
info=None
):
"""Crop around principal point + downscale => (512×288) or (288×512)."""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
W_org, H_org = image.size
cx, cy = int(round(intrinsics_3x3[0, 2])), int(round(intrinsics_3x3[1, 2]))
min_margin_x = min(cx, W_org - cx)
min_margin_y = min(cy, H_org - cy)
left = cx - min_margin_x
top = cy - min_margin_y
right = cx + min_margin_x
bottom = cy + min_margin_y
crop_bbox = (left, top, right, bottom)
image_c, _, intrinsics_c = cropping.crop_image_depthmap(
image,
None,
intrinsics_3x3,
crop_bbox
)
# Check orientation
W_c, H_c = image_c.size
if H_c > W_c:
# swap if portrait
target_resolution = (target_resolution[1], target_resolution[0])
# Downscale
image_rs, _, intrinsics_rs = cropping.rescale_image_depthmap(
image_c, None, intrinsics_c, np.array(target_resolution)
)
intrinsics2 = cropping.camera_matrix_of_crop(
intrinsics_rs, image_rs.size, target_resolution, offset_factor=0.5
)
final_bbox = cropping.bbox_from_intrinsics_in_out(
intrinsics_rs, intrinsics2, target_resolution
)
image_out, _, intrinsics_out = cropping.crop_image_depthmap(
image_rs, None, intrinsics_rs, final_bbox
)
return image_out, intrinsics_out
########################
# 3) Worker function: processes a subset of folders on a given GPU
########################
def process_folders(args):
"""
args: tuple(
video_folders, device_id,
re10k_video_root, re10k_txt_root,
checkpoint_path, output_folder
)
Each worker loads the model on 'cuda:device_id' and runs inference.
Returns a list of dicts with final metrics for each folder.
"""
(video_folders, device_id,
re10k_video_root, re10k_txt_root,
checkpoint_path, output_folder) = args
device = torch.device(f"cuda:{device_id}" if torch.cuda.is_available() else "cpu")
print(f"[Process GPU {device_id}] => device = {device}")
# 1) Load model
print(f"[Process GPU {device_id}] Loading checkpoint: {checkpoint_path}")
cfg_path = os.path.join(os.path.dirname(checkpoint_path), "../.hydra/config.yaml")
cfg = OmegaConf.load(cfg_path)
cfg.model.net = replace_dust3r_in_config(cfg.model.net)
if "encoder_args" in cfg.model.net:
cfg.model.net.encoder_args.patch_embed_cls = "PatchEmbedDust3R"
cfg.model.net.head_args.landscape_only = False
else:
cfg.model.net.patch_embed_cls = "PatchEmbedDust3R"
cfg.model.net.landscape_only = False
cfg.model.net.decoder_args.random_image_idx_embedding = True
cfg.model.net.decoder_args.attn_bias_for_inference_enabled = False
lit_module = hydra.utils.instantiate(
cfg.model, train_criterion=None, validation_criterion=None
)
lit_module = MultiViewDUSt3RLitModule.load_from_checkpoint(
checkpoint_path=checkpoint_path,
net=lit_module.net,
train_criterion=lit_module.train_criterion,
validation_criterion=lit_module.validation_criterion
)
lit_module.eval()
model = lit_module.net.to(device)
# Optionally compile
# model = torch.compile(model)
results_list = []
# 2) For each folder => sample frames => run inference => evaluate poses
for vid_folder in tqdm(video_folders, desc=f"[GPU {device_id}] Evaluate"):
folder_path = os.path.join(re10k_video_root, vid_folder)
if not os.path.isdir(folder_path):
continue
txt_path = os.path.join(re10k_txt_root, vid_folder + ".txt")
if not os.path.exists(txt_path):
continue
with open(txt_path, "r") as f:
txt_lines = f.read().strip().split("\n")
if len(txt_lines) <= 1:
continue
txt_lines = txt_lines[1:] # skip first line (URL)
lines_map = {}
for line in txt_lines:
parts = line.strip().split()
# Expect at least 19 columns
if len(parts) < 19:
continue
frame_id = parts[0]
lines_map[frame_id] = parts
frame_files = sorted(glob.glob(os.path.join(folder_path, "*.jpg")))
if len(frame_files) < 2:
continue
# Sample up to 10 frames per folder
n_to_sample = min(10, len(frame_files))
sampled_frames = random.sample(frame_files, n_to_sample)
sampled_frames.sort()
selected_views = []
for frame_path in sampled_frames:
basename = os.path.splitext(os.path.basename(frame_path))[0]
if basename not in lines_map:
continue
columns = lines_map[basename]
# parse fx, fy, cx, cy
fx = float(columns[1])
fy = float(columns[2])
cx = float(columns[3])
cy = float(columns[4])
# parse extrinsic row-major 3×4 => build 4×4, then invert to get c2w
extrinsic_val = [float(v) for v in columns[7:19]] # 12 floats
extrinsic = np.array(extrinsic_val, dtype=np.float64).reshape(3, 4)
# Build 4x4
pose_4x4 = np.eye(4, dtype=np.float32)
pose_4x4[:3, :3] = extrinsic[:3, :3]
pose_4x4[:3, 3] = extrinsic[:3, 3] # translation in last column
poses_c2w_gt = inv(pose_4x4).astype(np.float32)
# Load image
img_rgb = imread_cv2(frame_path)
if img_rgb is None:
continue
H_org, W_org = img_rgb.shape[:2]
# Build K
K_3x3 = np.array([
[fx * W_org, 0.0, cx * W_org],
[0.0, fy * H_org, cy * H_org],
[0.0, 0.0, 1.0]
], dtype=np.float32)
# Crop+resize => final_img_pil, final_intrinsics
pil_img = Image.fromarray(img_rgb)
final_img_pil, final_intrinsics_3x3 = crop_resize_if_necessary(
pil_img, K_3x3, target_resolution=(512, 288)
)
tensor_chw = ImgNorm(final_img_pil)
# Put data on GPU
view_dict = {
"img": tensor_chw.unsqueeze(0).to(device), # (1,3,H,W)
"camera_pose": torch.from_numpy(poses_c2w_gt).unsqueeze(0).to(device), # (1,4,4)
"camera_intrinsics": torch.from_numpy(final_intrinsics_3x3).unsqueeze(0).to(device), # (1,3,3)
"dataset": ["RealEstate10K"],
"true_shape": torch.tensor([[final_img_pil.size[1], final_img_pil.size[0]]], device=device),
}
selected_views.append(view_dict)
if len(selected_views) < 2:
continue
output = inference(
selected_views,
model=model,
device=device,
dtype=torch.float32,
verbose=False,
profiling=False
)
# Evaluate camera poses
pose_results = lit_module.evaluate_camera_poses(
views=output["views"],
preds=output["preds"],
niter_PnP=100,
focal_length_estimation_method='first_view_from_global_head'
)
if len(pose_results) > 0:
metrics_dict = pose_results[0]
metrics_dict["video_name"] = vid_folder
# Save result to file
out_path = os.path.join(output_folder, f"{vid_folder}.txt")
with open(out_path, "w") as ff:
ff.write(str(metrics_dict))
results_list.append(metrics_dict)
return results_list
########################
# 4) The main: splits data for 2 GPUs, spawns processes, aggregates final metrics
########################
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--subset_file", type=str, default=None,
help="Optional path to a text file with subset folder names to evaluate")
parser.add_argument("--gpu_count", type=int, default=2, help="Number of GPUs to use")
args = parser.parse_args()
# Setup paths
re10k_video_root = "/data/jianingy/RealEstate10K/videos/test"
re10k_txt_root = "/data/jianingy/RealEstate10K/test"
output_folder = "/home/jianingy/research/fast3r/notebooks/RealEstate10K_eval"
os.makedirs(output_folder, exist_ok=True)
# Checkpoint
checkpoint_dir = "/data/jianingy/dust3r_data/fast3r_checkpoints/super_long_training_5175604"
possible_dir = os.path.join(checkpoint_dir, "checkpoints", "last.ckpt")
if os.path.isdir(possible_dir):
# Convert zero checkpoint
ckpt_agg = os.path.join(checkpoint_dir, "checkpoints", "last_aggregated.ckpt")
if not os.path.exists(ckpt_agg):
convert_zero_checkpoint_to_fp32_state_dict(possible_dir, ckpt_agg, tag=None)
CKPT_PATH = ckpt_agg
else:
CKPT_PATH = os.path.join(checkpoint_dir, "checkpoints", "last.ckpt")
# All video folders
all_folders = sorted(os.listdir(re10k_video_root))
all_folders = [f for f in all_folders if os.path.isdir(os.path.join(re10k_video_root, f))]
# If user specified a subset file, only keep those folders
if args.subset_file and os.path.exists(args.subset_file):
with open(args.subset_file, "r") as f:
subset_scenes = set(line.strip() for line in f if line.strip())
all_folders = [fd for fd in all_folders if fd in subset_scenes]
# If no folders remain, just exit
if not all_folders:
print("No matching folders found. Exiting.")
return
# Split in 'args.gpu_count' parts. By default =2
n_gpus = args.gpu_count
chunk_size = math.ceil(len(all_folders) / n_gpus)
subfolders_list = []
for i in range(n_gpus):
start_i = i * chunk_size
end_i = start_i + chunk_size
subfolders_list.append(all_folders[start_i:end_i])
# We'll run n_gpus processes in parallel
tasks = []
for i in range(n_gpus):
if subfolders_list[i]:
tasks.append((subfolders_list[i], i, re10k_video_root, re10k_txt_root, CKPT_PATH, output_folder))
ctx = get_context("spawn") # or "fork" if on Linux
pool = ctx.Pool(processes=len(tasks))
async_results = []
for arg_tuple in tasks:
ar = pool.apply_async(process_folders, (arg_tuple,))
async_results.append(ar)
# Collect
all_results = []
for ar in async_results:
subset_res = ar.get() # each is a list of metrics
all_results.extend(subset_res)
pool.close()
pool.join()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Aggregate
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
aggregator = defaultdict(list)
# Typical keys from evaluate_camera_poses
metric_keys = ["RRA_at_5","RRA_at_15","RRA_at_30","RTA_at_5","RTA_at_15","RTA_at_30","mAA_30"]
for res in all_results:
for k in metric_keys:
if k in res:
aggregator[k].append(float(res[k]))
final_means = {}
for k in metric_keys:
vals = aggregator.get(k, [])
if vals:
final_means[k] = sum(vals)/len(vals)
else:
final_means[k] = float("nan")
# Print summary
if RICH_AVAILABLE:
console = Console()
table = Table(title="RealEstate10K Pose Metrics Summary (Multi-GPU aggregated)")
table.add_column("Metric", justify="left")
table.add_column("Mean Value", justify="right")
for k in metric_keys:
val = final_means[k]
table.add_row(k, f"{val:.4f}")
console.print(table)
else:
print("Final Means for RealEstate10K Pose:")
for k in metric_keys:
print(f"{k}: {final_means[k]:.4f}")
print(f"[Main] Done! Processed {len(all_results)} video folders total.")
if __name__ == "__main__":
main()