Spaces:
Sleeping
Sleeping
File size: 4,255 Bytes
b5a5cbc 3bea6ba b5a5cbc 3bea6ba b5a5cbc a80914c 3bea6ba a80914c cc37cda 315eb56 cc37cda 315eb56 18a078c a80914c cc37cda a80914c b5a5cbc 3bea6ba b5a5cbc a80914c b5a5cbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import gradio as gr
import numpy as np
import tensorflow as tf
from PIL import Image
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
import matplotlib.pyplot as plt
from matplotlib import gridspec
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[255, 0, 0],
[255, 187, 0],
[255, 228, 0],
[29, 219, 22],
[178, 204, 255],
[1, 0, 255],
[165, 102, 255],
[217, 65, 197],
[116, 116, 116],
[204, 114, 61],
[206, 242, 121],
[61, 183, 204],
[94, 94, 94],
[196, 183, 59],
[246, 246, 246],
[209, 178, 255],
[0, 87, 102],
[153, 0, 76],
[47, 157, 39]
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(logits, input_img.size[::-1])
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
# 각 물체에 대한 예측 클래스와 확률 얻기
unique_labels = np.unique(seg.numpy().astype("uint8"))
class_probabilities = {}
for label in unique_labels:
mask = (seg.numpy() == label)
class_name = labels_list[label]
class_prob = np.mean(logits.numpy()[0][mask])
class_probabilities[class_name] = class_prob
# Gradio Interface에 출력할 문자열 생성
output_text = "Predicted class probabilities:\n"
for class_name, prob in class_probabilities.items():
output_text += f"{class_name}: {prob:.4f}\n"
# 정확성이 가장 높은 물체 정보 출력
max_prob_class = max(class_probabilities, key=class_probabilities.get)
max_prob_value = class_probabilities[max_prob_class]
output_text += f"\nPredicted class with highest probability: {max_prob_class}, Probability: {max_prob_value:.4f}"
return fig, output_text
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(400, 600)),
outputs=['plot', 'text'],
examples=["citiscapes-1.jpeg", "citiscapes-2.jpeg"],
allow_flagging='never')
demo.launch()
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(400, 600)),
outputs=['plot', 'text'],
examples=["citiscapes-1.jpeg", "citiscapes-2.jpeg"],
allow_flagging='never')
demo.launch()
|