File size: 5,627 Bytes
73f9ca3
 
 
 
 
 
 
 
 
 
 
21bc0bf
73f9ca3
 
 
 
43c6c0a
73f9ca3
 
 
 
21bc0bf
73f9ca3
 
 
 
 
 
cb8465b
 
73f9ca3
 
 
 
 
 
 
21bc0bf
 
 
73f9ca3
 
 
 
 
 
 
 
 
 
 
 
 
 
21bc0bf
 
 
73f9ca3
 
 
 
 
 
 
 
 
 
 
21bc0bf
43c6c0a
fa518b8
 
21bc0bf
 
 
43c6c0a
21bc0bf
43c6c0a
21bc0bf
73f9ca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9d36a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f9ca3
 
 
 
43c6c0a
73f9ca3
43c6c0a
21bc0bf
73f9ca3
 
 
 
dd8192e
43c6c0a
0a9d36a
fd6fb1a
73f9ca3
 
 
 
 
 
 
21bc0bf
73f9ca3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    model_repo_id,
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    guidance_scale,
    num_inference_steps,
    width=MAX_IMAGE_SIZE,
    height=MAX_IMAGE_SIZE,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    
    pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
    pipe = pipe.to(device)
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "mimic: PA view, FINAL REPORT\n PA AND LATERAL CHEST OF ___\n \n COMPARISON:  ___ radiograph.\n \n FINDINGS:  Cardiac silhouette is upper limits of normal in size and\n accompanied by pulmonary vascular congestion and a basilar predominant\n interstitial abnormality which most likely represents interstitial edema. \n Small bilateral pleural effusions are present, left greater than right, with\n interval decrease in size since the prior radiograph.  There is also improving\n aeration in the left retrocardiac region, likely resolving atelectasis.",
    "mimic: AP view, small left-sided pleural effusion, discrete density overlying the postero-lateral rib, supraclavicular catheter at the cavoatrial junction, new opacity within the left lower lobe and lingula",
    "mimic: AP view, FINAL REPORT\n EXAMINATION:  CHEST (PORTABLE AP)\n \n INDICATION:  ___ year old woman with ?TIA  // r/o acute CP process      r/o\n acute CP process\n \n IMPRESSION: \n \n In comparison with the study of ___, there again are low lung\n volumes with elevation of the right hemidiaphragmatic contour. Cardiac\n silhouette is at the upper limits of normal or mildly enlarged. No evidence of\n acute pneumonia or vascular congestion.\n \n Right IJ catheter extends to the mid to lower portion of the SVC.",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # SD Demo")
        gr.Markdown(" ## Inference Settings:")
        gr.Markdown(" **roentgen**: Guidance Scale: `4`")
        gr.Markdown(" **sd2-findings**: Guidance Scale: `7.5`")

        with gr.Row():
            model_repo_id = gr.Dropdown(
                choices=['Cylumn/roentgen', 'Cylumn/sd2-findings'],
                label="Select Model",
                value='Cylumn/sd2-findings'
            )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            # with gr.Row():
            #     width = gr.Slider(
            #         label="Width",
            #         minimum=512,
            #         maximum=MAX_IMAGE_SIZE,
            #         step=32,
            #         value=512,  # Replace with defaults that work for your model
            #     )

            #     height = gr.Slider(
            #         label="Height",
            #         minimum=512,
            #         maximum=MAX_IMAGE_SIZE,
            #         step=32,
            #         value=1024,  # Replace with defaults that work for your model
            #     )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0,
                    maximum=10.0,
                    step=0.5,
                    value=7.5,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=25,
                    maximum=100,
                    step=5,
                    value=35,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model_repo_id,
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()