File size: 5,627 Bytes
73f9ca3 21bc0bf 73f9ca3 43c6c0a 73f9ca3 21bc0bf 73f9ca3 cb8465b 73f9ca3 21bc0bf 73f9ca3 21bc0bf 73f9ca3 21bc0bf 43c6c0a fa518b8 21bc0bf 43c6c0a 21bc0bf 43c6c0a 21bc0bf 73f9ca3 0a9d36a 73f9ca3 43c6c0a 73f9ca3 43c6c0a 21bc0bf 73f9ca3 dd8192e 43c6c0a 0a9d36a fd6fb1a 73f9ca3 21bc0bf 73f9ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
import numpy as np
import random
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
model_repo_id,
prompt,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
width=MAX_IMAGE_SIZE,
height=MAX_IMAGE_SIZE,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"mimic: PA view, FINAL REPORT\n PA AND LATERAL CHEST OF ___\n \n COMPARISON: ___ radiograph.\n \n FINDINGS: Cardiac silhouette is upper limits of normal in size and\n accompanied by pulmonary vascular congestion and a basilar predominant\n interstitial abnormality which most likely represents interstitial edema. \n Small bilateral pleural effusions are present, left greater than right, with\n interval decrease in size since the prior radiograph. There is also improving\n aeration in the left retrocardiac region, likely resolving atelectasis.",
"mimic: AP view, small left-sided pleural effusion, discrete density overlying the postero-lateral rib, supraclavicular catheter at the cavoatrial junction, new opacity within the left lower lobe and lingula",
"mimic: AP view, FINAL REPORT\n EXAMINATION: CHEST (PORTABLE AP)\n \n INDICATION: ___ year old woman with ?TIA // r/o acute CP process r/o\n acute CP process\n \n IMPRESSION: \n \n In comparison with the study of ___, there again are low lung\n volumes with elevation of the right hemidiaphragmatic contour. Cardiac\n silhouette is at the upper limits of normal or mildly enlarged. No evidence of\n acute pneumonia or vascular congestion.\n \n Right IJ catheter extends to the mid to lower portion of the SVC.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # SD Demo")
gr.Markdown(" ## Inference Settings:")
gr.Markdown(" **roentgen**: Guidance Scale: `4`")
gr.Markdown(" **sd2-findings**: Guidance Scale: `7.5`")
with gr.Row():
model_repo_id = gr.Dropdown(
choices=['Cylumn/roentgen', 'Cylumn/sd2-findings'],
label="Select Model",
value='Cylumn/sd2-findings'
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=512,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=512, # Replace with defaults that work for your model
# )
# height = gr.Slider(
# label="Height",
# minimum=512,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0,
maximum=10.0,
step=0.5,
value=7.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=25,
maximum=100,
step=5,
value=35, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model_repo_id,
prompt,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|