Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,8 @@ from fastapi import FastAPI
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import pipeline
|
4 |
|
5 |
-
#
|
6 |
-
question_extractor = pipeline("text-classification", model="
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
@@ -16,8 +16,9 @@ def extract_question(data: OCRText):
|
|
16 |
lines = text.split("\n")
|
17 |
|
18 |
ranked_lines = sorted(lines, key=lambda line: question_extractor(line)[0]['score'], reverse=True)
|
19 |
-
top_sentences = [line for line in ranked_lines[:3] if len(line) > 10]
|
20 |
|
21 |
question_text = " ".join(top_sentences)
|
22 |
|
23 |
return {"extracted_question": question_text}
|
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import pipeline
|
4 |
|
5 |
+
# ✅ Use Hugging Face Hub Instead of Local Model
|
6 |
+
question_extractor = pipeline("text-classification", model="textattack/bert-base-uncased-MRPC")
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
|
|
16 |
lines = text.split("\n")
|
17 |
|
18 |
ranked_lines = sorted(lines, key=lambda line: question_extractor(line)[0]['score'], reverse=True)
|
19 |
+
top_sentences = [line for line in ranked_lines[:3] if len(line) > 10]
|
20 |
|
21 |
question_text = " ".join(top_sentences)
|
22 |
|
23 |
return {"extracted_question": question_text}
|
24 |
+
|