Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Load AI Model for Question Extraction
|
6 |
+
question_extractor = pipeline("text-classification", model="textattack/bert-base-uncased-MRPC")
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
# Define API Input Format
|
11 |
+
class OCRText(BaseModel):
|
12 |
+
text: str
|
13 |
+
|
14 |
+
@app.post("/extract_question")
|
15 |
+
def extract_question(data: OCRText):
|
16 |
+
text = data.text
|
17 |
+
lines = text.split("\n")
|
18 |
+
|
19 |
+
# Use AI Model to Identify Question Parts
|
20 |
+
ranked_lines = sorted(lines, key=lambda line: question_extractor(line)[0]['score'], reverse=True)
|
21 |
+
top_sentences = [line for line in ranked_lines[:3] if len(line) > 10] # Keep Top 3 Sentences
|
22 |
+
|
23 |
+
question_text = " ".join(top_sentences)
|
24 |
+
|
25 |
+
return {"extracted_question": question_text}
|