Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import sqlite3
|
5 |
+
import os
|
6 |
+
openai.api_key = os.environ["Secret"]
|
7 |
+
|
8 |
+
#OpenAi call
|
9 |
+
def gpt3(texts):
|
10 |
+
response = openai.Completion.create(
|
11 |
+
engine="code-davinci-002",
|
12 |
+
prompt= texts,
|
13 |
+
temperature=0,
|
14 |
+
max_tokens=750,
|
15 |
+
top_p=1,
|
16 |
+
frequency_penalty=0.0,
|
17 |
+
presence_penalty=0.0,
|
18 |
+
stop = (";", "/*", "</code>")
|
19 |
+
)
|
20 |
+
x = response.choices[0].text
|
21 |
+
|
22 |
+
return x
|
23 |
+
|
24 |
+
# Function to elicit sql response from model
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# Function to elicit sql response from model
|
29 |
+
|
30 |
+
|
31 |
+
def greet(prompt, file = None):
|
32 |
+
|
33 |
+
#get the file path from the file object
|
34 |
+
file_path = file.name
|
35 |
+
|
36 |
+
# read the file and get the column names
|
37 |
+
if file_path:
|
38 |
+
if file_path.endswith(".csv"):
|
39 |
+
df = pd.read_csv(file_path)
|
40 |
+
columns = " ".join(df.columns)
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
elif file_path.endswith((".xls", ".xlsx")):
|
46 |
+
df = pd.read_excel(file_path)
|
47 |
+
columns = " ".join(df.columns)
|
48 |
+
else:
|
49 |
+
return "Invalid file type. Please provide a CSV or Excel file."
|
50 |
+
|
51 |
+
# create a SQLite database in memory
|
52 |
+
con = sqlite3.connect(":memory:")
|
53 |
+
# extract the table name so it can be used in the SQL query
|
54 |
+
# in order to get the table name, we need to remove the file extension
|
55 |
+
|
56 |
+
table_name =
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
# write the DataFrame to a SQL table
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
df.to_sql(table_name, con)
|
69 |
+
else:
|
70 |
+
return "Please upload a file."
|
71 |
+
txt= (f'''/*Prompt: {prompt}\nColumns: {columns}\nTable: {table_name}*/ \n —-SQL Code:\n''')
|
72 |
+
sql = gpt3(txt)
|
73 |
+
|
74 |
+
|
75 |
+
# execute the SQL query
|
76 |
+
if con:
|
77 |
+
df = pd.read_sql_query(sql, con)
|
78 |
+
return sql, df
|
79 |
+
else:
|
80 |
+
return sql, None
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
#Code to set up Gradio UI
|
89 |
+
iface = gr.Interface(greet,
|
90 |
+
inputs = ["text", ("file")],
|
91 |
+
outputs = ["text",gr.Dataframe(type="pandas")],
|
92 |
+
title="Natural Language to SQL",
|
93 |
+
description="Enter any prompt and get a SQL statement back! For better results, give it more context")
|
94 |
+
iface.launch()
|