Spaces:
Running
Running
File size: 19,346 Bytes
02d640a b07e47b 02d640a b07e47b 02d640a b07e47b 4f8a105 b07e47b ffea40d b07e47b 4f8a105 69af1c5 4f8a105 ffea40d 69af1c5 ffea40d 69af1c5 ffea40d 4f8a105 ffea40d 4f8a105 ffea40d 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 ffea40d 69af1c5 ffea40d 69af1c5 ffea40d 4f8a105 69af1c5 4f8a105 ffea40d 4f8a105 ffea40d 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 ffea40d 4f8a105 69af1c5 ffea40d 4f8a105 69af1c5 4f8a105 ffea40d 69af1c5 4f8a105 ffea40d 4f8a105 69af1c5 ffea40d 4f8a105 69af1c5 4f8a105 b07e47b 69af1c5 4f8a105 ffea40d 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 642e9cc 4f8a105 69af1c5 ffea40d 4f8a105 69af1c5 ffea40d 69af1c5 4f8a105 b07e47b 69af1c5 4f8a105 ffea40d 4f8a105 69af1c5 ffea40d 4f8a105 ffea40d 4f8a105 ffea40d 69af1c5 4f8a105 ffea40d 69af1c5 ffea40d 69af1c5 ffea40d 69af1c5 ffea40d b07e47b 69af1c5 ffea40d b07e47b ffea40d 69af1c5 ffea40d 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 ffea40d 4f8a105 ffea40d 69af1c5 ffea40d 69af1c5 4f8a105 69af1c5 4f8a105 69af1c5 4f8a105 b07e47b ffea40d 69af1c5 ffea40d 69af1c5 ffea40d 4f8a105 ffea40d b07e47b 4f8a105 69af1c5 b07e47b 69af1c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import os
import sys
import asyncio
import logging
import threading
import queue
import gradio as gr
import httpx
from typing import Generator, Any, Dict, List, Optional, Callable
from functools import lru_cache
# -------------------- Configuration --------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# -------------------- External Model Call (with Caching) --------------------
@lru_cache(maxsize=128) # Cache up to 128 responses
async def call_model(prompt: str, model: str = "gpt-4o", api_key: str = None) -> str:
"""Sends a prompt to the OpenAI API endpoint, with caching."""
if api_key is None:
api_key = os.getenv("OPENAI_API_KEY")
if api_key is None:
raise ValueError("OpenAI API key not found.")
url = "https://api.openai.com/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
payload = {
"model": model,
"messages": [{"role": "user", "content": prompt}],
}
async with httpx.AsyncClient(timeout=httpx.Timeout(300.0)) as client:
response = await client.post(url, headers=headers, json=payload)
response.raise_for_status()
response_json = response.json()
return response_json["choices"][0]["message"]["content"]
# -------------------- Shared Context --------------------
class Context:
def __init__(self, original_task: str, optimized_task: Optional[str] = None,
plan: Optional[str] = None, code: Optional[str] = None,
review_comments: Optional[List[Dict[str, str]]] = None,
test_cases: Optional[str] = None, test_results: Optional[str] = None,
documentation: Optional[str] = None, conversation_history: Optional[List[Dict[str, str]]] = None):
self.original_task = original_task
self.optimized_task = optimized_task
self.plan = plan
self.code = code
self.review_comments = review_comments or []
self.test_cases = test_cases
self.test_results = test_results
self.documentation = documentation
self.conversation_history = conversation_history or []
def add_conversation_entry(self, agent_name: str, message: str):
self.conversation_history.append({"agent": agent_name, "message": message})
# -------------------- Agent Classes --------------------
class PromptOptimizerAgent:
async def optimize_prompt(self, context: Context, api_key: str) -> Context:
"""Optimizes the user's initial prompt."""
system_prompt = "Improve the prompt. Be clear, specific, and complete. Keep original intent. Return ONLY the revised prompt."
full_prompt = f"{system_prompt}\n\nUser's prompt:\n{context.original_task}"
optimized = await call_model(full_prompt, model="gpt-4o", api_key=api_key)
context.optimized_task = optimized
context.add_conversation_entry("Prompt Optimizer", f"Optimized Task:\n{optimized}")
return context
class OrchestratorAgent:
def __init__(self, log_queue: queue.Queue, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> None:
self.log_queue = log_queue
self.human_in_the_loop_event = human_in_the_loop_event
self.human_input_queue = human_input_queue
async def generate_plan(self, context: Context, api_key: str, human_feedback: Optional[str] = None) -> Context:
"""Generates a plan, potentially requesting human feedback."""
if human_feedback:
prompt = (
f"You are a planner. Revise/complete the plan for '{context.original_task}' using feedback:\n"
f"{human_feedback}\n\nCurrent Plan:\n{context.plan if context.plan else 'No plan yet.'}\n\n"
"Output the plan as a numbered list. If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'"
)
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
else:
prompt = (
f"You are a planner. Create a plan for: '{context.optimized_task}'. "
"Break down the task. Assign sub-tasks to: Coder, Code Reviewer, Quality Assurance Tester, and Documentation Agent. "
"Include review/revision steps. Consider error handling. Include documentation instructions.\n\n"
"If unsure, output 'REQUEST_HUMAN_FEEDBACK\\n[Question]'\n\nOutput the plan as a numbered list."
)
plan = await call_model(prompt, model="gpt-4o", api_key=api_key)
if "REQUEST_HUMAN_FEEDBACK" in plan:
self.log_queue.put("[Orchestrator]: Requesting human feedback...")
question = plan.split("REQUEST_HUMAN_FEEDBACK\n", 1)[1].strip()
self.log_queue.put(f"[Orchestrator]: Question for human: {question}")
#Prepare detailed context for human
feedback_request_context = (f"The orchestrator agent is requesting feedback on the following task:\n **{context.optimized_task}**\n\n"
f"The current plan (if any):\n**{context.plan}**\n\n" if context.plan else "") + f"The specific question is:\n**{question}**"
self.human_in_the_loop_event.set() # Signal the human input thread
human_response = self.get_human_response(feedback_request_context) # Pass context to input function
self.human_in_the_loop_event.clear() # Reset the event
self.log_queue.put(f"[Orchestrator]: Received human feedback: {human_response}")
context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}\n\nHuman Feedback Requested. Question: {question}")
return await self.generate_plan(context, api_key, human_response) # Recursive call
context.plan = plan
context.add_conversation_entry("Orchestrator", f"Plan:\n{plan}")
return context
def get_human_response(self, feedback_request_context):
"""Gets human input, using the Gradio queue and event."""
self.human_input_queue.put(feedback_request_context) # Put the question into Gradio
human_response = self.human_input_queue.get() # Get the response
return human_response
class CoderAgent:
async def generate_code(self, context: Context, api_key: str, model: str = "gpt-4o") -> Context:
"""Generates code based on instructions."""
prompt = (
"You are a coding agent. Output ONLY the code. "
"Adhere to best practices. Include error handling.\n\n"
f"Instructions:\n{context.plan}"
)
code = await call_model(prompt, model=model, api_key=api_key)
context.code = code
context.add_conversation_entry("Coder", f"Code:\n{code}")
return context
class CodeReviewerAgent:
async def review_code(self, context: Context, api_key: str) -> Context:
"""Reviews code. Provides concise, actionable feedback or 'APPROVE'."""
prompt = (
"You are a code reviewer. Provide CONCISE feedback. "
"Focus on correctness, efficiency, readability, error handling, security, and adherence to the task. "
"Suggest improvements. If acceptable, respond with ONLY 'APPROVE'. "
"Do NOT generate code.\n\n"
f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
)
review = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.add_conversation_entry("Code Reviewer", f"Review:\n{review}")
# Structured Feedback (Example)
if "APPROVE" not in review.upper():
structured_review = {"comments": []}
#In a real implementation you might use a more advanced parsing technique here
for line in review.splitlines():
if line.strip(): #Simple example
structured_review["comments"].append({"issue": line.strip(), "line_number": "N/A", "severity": "Medium"}) #Dummy data
context.review_comments.append(structured_review)
return context
class QualityAssuranceTesterAgent:
async def generate_test_cases(self, context: Context, api_key: str) -> Context:
"""Generates test cases."""
prompt = (
"You are a testing agent. Generate test cases. "
"Consider edge cases and error scenarios. Output in a clear format.\n\n"
f"Task: {context.optimized_task}\n\nCode:\n{context.code}"
)
test_cases = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.test_cases = test_cases
context.add_conversation_entry("QA Tester", f"Test Cases:\n{test_cases}")
return context
async def run_tests(self, context: Context, api_key: str) -> Context:
"""Runs tests and reports results."""
prompt = (
"Run the test cases. Compare actual vs expected output. "
"State discrepancies. If all pass, output 'TESTS PASSED'.\n\n"
f"Code:\n{context.code}\n\nTest Cases:\n{context.test_cases}"
)
test_results = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.test_results = test_results
context.add_conversation_entry("QA Tester", f"Test Results:\n{test_results}")
return context
class DocumentationAgent:
async def generate_documentation(self, context: Context, api_key: str) -> Context:
"""Generates documentation, including a --help message."""
prompt = (
"Generate clear and concise documentation. "
"Include a brief description, explanation, and a --help message.\n\n"
f"Code:\n{context.code}"
)
documentation = await call_model(prompt, model="gpt-4o", api_key=api_key)
context.documentation = documentation
context.add_conversation_entry("Documentation Agent", f"Documentation:\n{documentation}")
return context
# -------------------- Agent Dispatcher (New) --------------------
class AgentDispatcher:
def __init__(self, log_queue: queue.Queue, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue):
self.log_queue = log_queue
self.human_in_the_loop_event = human_in_the_loop_event
self.human_input_queue = human_input_queue
self.agents = {
"prompt_optimizer": PromptOptimizerAgent(),
"orchestrator": OrchestratorAgent(log_queue, human_in_the_loop_event, human_input_queue),
"coder": CoderAgent(),
"code_reviewer": CodeReviewerAgent(),
"qa_tester": QualityAssuranceTesterAgent(),
"documentation_agent": DocumentationAgent(),
}
async def dispatch(self, agent_name: str, context: Context, api_key: str, **kwargs) -> Context:
"""Dispatches the task to the specified agent."""
agent = self.agents.get(agent_name)
if not agent:
raise ValueError(f"Unknown agent: {agent_name}")
self.log_queue.put(f"[{agent_name.replace('_', ' ').title()}]: Starting task...")
if agent_name == "prompt_optimizer":
context = await agent.optimize_prompt(context, api_key)
elif agent_name == "orchestrator":
context = await agent.generate_plan(context, api_key) #Removed human_feedback
elif agent_name == "coder":
context = await agent.generate_code(context, api_key, **kwargs)
elif agent_name == "code_reviewer":
context = await agent.review_code(context, api_key)
elif agent_name == "qa_tester":
if kwargs.get("generate_tests", False):
context = await agent.generate_test_cases(context, api_key)
elif kwargs.get("run_tests", False):
context = await agent.run_tests(context, api_key)
elif agent_name == "documentation_agent":
context = await agent.generate_documentation(context, api_key)
else:
raise ValueError(f"Unknown Agent Name: {agent_name}")
return context
async def determine_next_agent(self, context:Context, api_key:str) -> str:
"""Determines the next agent to run based on the current context."""
if not context.optimized_task:
return "prompt_optimizer"
if not context.plan:
return "orchestrator"
if not context.code:
return "coder"
if not context.review_comments or "APPROVE" not in [comment.get('issue',"").upper() for comment_list in context.review_comments for comment in comment_list.get("comments",[]) ]:
return "code_reviewer"
if not context.test_cases:
return "qa_tester"
if not context.test_results or "TESTS PASSED" not in context.test_results.upper() :
return "qa_tester"
if not context.documentation:
return "documentation_agent"
return "done" # All tasks are complete
# -------------------- Multi-Agent Conversation (Refactored) --------------------
async def multi_agent_conversation(task_message: str, log_queue: queue.Queue, api_key: str, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> None:
"""
Conducts the multi-agent conversation using the AgentDispatcher.
"""
context = Context(original_task=task_message)
dispatcher = AgentDispatcher(log_queue, human_in_the_loop_event, human_input_queue)
next_agent = await dispatcher.determine_next_agent(context, api_key)
while next_agent != "done":
if next_agent == "qa_tester":
if not context.test_cases:
context = await dispatcher.dispatch(next_agent, context, api_key, generate_tests=True)
else:
context = await dispatcher.dispatch(next_agent, context, api_key, run_tests=True)
elif next_agent == "coder" and (context.review_comments or context.test_results):
#Coder needs a different model after the first coding
context = await dispatcher.dispatch(next_agent,context, api_key, model="gpt-3.5-turbo-16k")
else:
context = await dispatcher.dispatch(next_agent, context, api_key) # Call the agent
next_agent = await dispatcher.determine_next_agent(context, api_key)
if next_agent == "code_reviewer" and context.review_comments and "APPROVE" in [comment.get('issue',"").upper() for comment_list in context.review_comments for comment in comment_list.get("comments",[]) ]:
next_agent = await dispatcher.determine_next_agent(context, api_key)
# Check for maximum revisions
if next_agent == "coder" and len([entry for entry in context.conversation_history if entry["agent"] == "Coder"]) > 5:
log_queue.put("Maximum revision iterations reached. Exiting.")
break;
log_queue.put("Conversation complete.")
log_queue.put(("result", context.conversation_history))
# -------------------- Process Generator and Human Input --------------------
def process_conversation_generator(task_message: str, api_key: str, human_in_the_loop_event: threading.Event, human_input_queue: queue.Queue) -> Generator[str, None, None]:
"""
Wraps the conversation and yields log messages. Handles human input.
"""
log_q: queue.Queue = queue.Queue()
def run_conversation() -> None:
asyncio.run(multi_agent_conversation(task_message, log_q, api_key, human_in_the_loop_event, human_input_queue))
thread = threading.Thread(target=run_conversation)
thread.start()
final_result = None
while thread.is_alive() or not log_q.empty():
try:
msg = log_q.get(timeout=0.1)
if isinstance(msg, tuple) and msg[0] == "result":
final_result = msg[1]
yield "Conversation complete."
else:
yield msg
except queue.Empty:
continue
thread.join()
if final_result:
conv_text = "\n=== Conversation ===\n"
for entry in final_result:
conv_text += f"[{entry['agent']}]: {entry['message']}\n\n"
yield conv_text
def get_human_feedback(placeholder_text):
"""Gets human input using a Gradio Textbox."""
with gr.Blocks() as human_feedback_interface:
with gr.Row():
human_input = gr.Textbox(lines=4, label="Human Feedback", placeholder=placeholder_text) #Removed placeholder
with gr.Row():
submit_button = gr.Button("Submit Feedback")
feedback_queue = queue.Queue()
def submit_feedback(input_text):
feedback_queue.put(input_text)
return ""
submit_button.click(submit_feedback, inputs=human_input, outputs=human_input)
human_feedback_interface.load(None, [], []) # Keep interface alive
return human_feedback_interface, feedback_queue
# -------------------- Chat Function for Gradio --------------------
def multi_agent_chat(message: str, history: List[Any], openai_api_key: str = None) -> Generator[str, None, None]:
"""Chat function for Gradio."""
if not openai_api_key:
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
yield "Error: API key not provided."
return
human_in_the_loop_event = threading.Event()
human_input_queue = queue.Queue() #For receiving the feedback request
yield from process_conversation_generator(message, openai_api_key, human_in_the_loop_event, human_input_queue)
while human_in_the_loop_event.is_set():
yield "Waiting for human feedback..."
try:
feedback_request = human_input_queue.get(timeout=0.1) #Non-blocking, check for feedback request
human_interface, feedback_queue = get_human_feedback(feedback_request)
#This is a hacky but currently only working way to make this work with gradio
yield gr.Textbox.update(visible=False), gr.update(visible=True)
human_feedback = feedback_queue.get(timeout=300) # Wait for up to 5 minutes
human_input_queue.put(human_feedback) #Put feedback where Orchestrator can find it.
human_in_the_loop_event.clear()
yield gr.Textbox.update(visible=True), human_interface.close() #Hide human input box
yield from process_conversation_generator(message, openai_api_key, human_in_the_loop_event, human_input_queue)
except queue.Empty: #If we get here, there was NO human feedback request, so skip.
continue #Go back to the top of the while loop
# -------------------- Launch the Chatbot --------------------
# Create the main chat interface
iface = gr.ChatInterface(
fn=multi_agent_chat,
additional_inputs=[gr.Textbox(label="OpenAI API Key (optional)", type="password", placeholder="Leave blank to use env variable")],
title="Multi-Agent Task Solver with Human-in-the-Loop",
description="""
- Collaborative workflow with Human-in-the-Loop.
- Orchestrator can ask for human feedback.
- Enter a task; agents will work on it. You may be prompted for input.
- Max 5 revisions.
- Provide API Key.
"""
)
#Need a dummy interface to prevent Gradio errors
dummy_iface = gr.Interface(lambda x:x, "textbox", "textbox")
if __name__ == "__main__":
demo = gr.TabbedInterface([iface, dummy_iface], ["Chatbot", "Dummy"])
demo.launch() |