Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +380 -0
- huggingface-space.yaml +16 -0
app.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import datetime
|
5 |
+
import pandas as pd
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import yaml
|
9 |
+
import uuid
|
10 |
+
import tempfile
|
11 |
+
import shutil
|
12 |
+
|
13 |
+
# Demo configuration
|
14 |
+
DEMO_CASE_ID = f"DEMO-{uuid.uuid4().hex[:8]}"
|
15 |
+
DEMO_OUTPUT_DIR = "demo_output"
|
16 |
+
DEMO_EVIDENCE_DIR = os.path.join(DEMO_OUTPUT_DIR, "evidence")
|
17 |
+
DEMO_ANALYSIS_DIR = os.path.join(DEMO_OUTPUT_DIR, "analysis")
|
18 |
+
DEMO_REPORT_DIR = os.path.join(DEMO_OUTPUT_DIR, "reports")
|
19 |
+
|
20 |
+
# Create directories if they don't exist
|
21 |
+
os.makedirs(DEMO_EVIDENCE_DIR, exist_ok=True)
|
22 |
+
os.makedirs(DEMO_ANALYSIS_DIR, exist_ok=True)
|
23 |
+
os.makedirs(DEMO_REPORT_DIR, exist_ok=True)
|
24 |
+
|
25 |
+
# Cloud provider connection functions
|
26 |
+
def test_aws_connection(access_key, secret_key, region):
|
27 |
+
"""Test connection to AWS"""
|
28 |
+
try:
|
29 |
+
import boto3
|
30 |
+
session = boto3.Session(
|
31 |
+
aws_access_key_id=access_key,
|
32 |
+
aws_secret_access_key=secret_key,
|
33 |
+
region_name=region
|
34 |
+
)
|
35 |
+
sts = session.client('sts')
|
36 |
+
identity = sts.get_caller_identity()
|
37 |
+
return True, f"Successfully connected to AWS as {identity['Arn']}"
|
38 |
+
except Exception as e:
|
39 |
+
return False, f"Failed to connect to AWS: {str(e)}"
|
40 |
+
|
41 |
+
def test_azure_connection(tenant_id, client_id, client_secret):
|
42 |
+
"""Test connection to Azure"""
|
43 |
+
try:
|
44 |
+
from azure.identity import ClientSecretCredential
|
45 |
+
from azure.mgmt.resource import ResourceManagementClient
|
46 |
+
|
47 |
+
credential = ClientSecretCredential(
|
48 |
+
tenant_id=tenant_id,
|
49 |
+
client_id=client_id,
|
50 |
+
client_secret=client_secret
|
51 |
+
)
|
52 |
+
|
53 |
+
# Create a resource management client
|
54 |
+
resource_client = ResourceManagementClient(credential, subscription_id)
|
55 |
+
|
56 |
+
# List resource groups to test the connection
|
57 |
+
resource_groups = list(resource_client.resource_groups.list())
|
58 |
+
return True, f"Successfully connected to Azure. Found {len(resource_groups)} resource groups."
|
59 |
+
except Exception as e:
|
60 |
+
return False, f"Failed to connect to Azure: {str(e)}"
|
61 |
+
|
62 |
+
def test_gcp_connection(service_account_json):
|
63 |
+
"""Test connection to GCP"""
|
64 |
+
try:
|
65 |
+
import json
|
66 |
+
from google.oauth2 import service_account
|
67 |
+
from google.cloud import storage
|
68 |
+
|
69 |
+
# Create a temporary file to store the service account JSON
|
70 |
+
fd, path = tempfile.mkstemp()
|
71 |
+
try:
|
72 |
+
with os.fdopen(fd, 'w') as tmp:
|
73 |
+
tmp.write(service_account_json)
|
74 |
+
|
75 |
+
# Create credentials from the service account file
|
76 |
+
credentials = service_account.Credentials.from_service_account_file(path)
|
77 |
+
|
78 |
+
# Create a storage client to test the connection
|
79 |
+
storage_client = storage.Client(credentials=credentials)
|
80 |
+
|
81 |
+
# List buckets to test the connection
|
82 |
+
buckets = list(storage_client.list_buckets())
|
83 |
+
return True, f"Successfully connected to GCP. Found {len(buckets)} storage buckets."
|
84 |
+
finally:
|
85 |
+
os.remove(path)
|
86 |
+
except Exception as e:
|
87 |
+
return False, f"Failed to connect to GCP: {str(e)}"
|
88 |
+
|
89 |
+
# Sample data for demonstration
|
90 |
+
def generate_sample_data(case_info, cloud_provider, incident_type, use_real_data=False, credentials=None):
|
91 |
+
"""Generate sample data for demonstration purposes or collect real data if credentials provided"""
|
92 |
+
|
93 |
+
if use_real_data and credentials:
|
94 |
+
# This would be where we implement real data collection using the provided credentials
|
95 |
+
# For now, we'll return a message indicating this would use real data
|
96 |
+
return {
|
97 |
+
"timeline": [],
|
98 |
+
"patterns": [],
|
99 |
+
"anomalies": [],
|
100 |
+
"files": {},
|
101 |
+
"message": "In a production deployment, this would collect real data from your cloud provider."
|
102 |
+
}
|
103 |
+
|
104 |
+
# Create sample timeline data
|
105 |
+
timeline_data = []
|
106 |
+
base_time = datetime.datetime.now() - datetime.timedelta(days=1)
|
107 |
+
|
108 |
+
# Different events based on incident type
|
109 |
+
if incident_type == "Unauthorized Access":
|
110 |
+
events = [
|
111 |
+
{"event": "Failed login attempt", "source": "Authentication Logs", "severity": "Low"},
|
112 |
+
{"event": "Successful login from unusual IP", "source": "Authentication Logs", "severity": "Medium"},
|
113 |
+
{"event": "User privilege escalation", "source": "IAM Logs", "severity": "High"},
|
114 |
+
{"event": "Access to sensitive data", "source": "Data Access Logs", "severity": "High"},
|
115 |
+
{"event": "Configuration change", "source": "Configuration Logs", "severity": "Medium"},
|
116 |
+
{"event": "New API key created", "source": "IAM Logs", "severity": "High"},
|
117 |
+
{"event": "Data download initiated", "source": "Data Access Logs", "severity": "Critical"},
|
118 |
+
{"event": "Unusual network traffic", "source": "Network Logs", "severity": "Medium"}
|
119 |
+
]
|
120 |
+
elif incident_type == "Data Exfiltration":
|
121 |
+
events = [
|
122 |
+
{"event": "Large query executed", "source": "Database Logs", "severity": "Medium"},
|
123 |
+
{"event": "Unusual data access pattern", "source": "Data Access Logs", "severity": "Medium"},
|
124 |
+
{"event": "Large data transfer initiated", "source": "Network Logs", "severity": "High"},
|
125 |
+
{"event": "Connection to unknown external endpoint", "source": "Network Logs", "severity": "High"},
|
126 |
+
{"event": "Storage object permissions modified", "source": "Storage Logs", "severity": "Medium"},
|
127 |
+
{"event": "Unusual user behavior", "source": "User Activity Logs", "severity": "Medium"},
|
128 |
+
{"event": "Data archive created", "source": "Storage Logs", "severity": "Medium"},
|
129 |
+
{"event": "Unusual egress traffic spike", "source": "Network Logs", "severity": "Critical"}
|
130 |
+
]
|
131 |
+
else: # Ransomware
|
132 |
+
events = [
|
133 |
+
{"event": "Unusual process execution", "source": "System Logs", "severity": "Medium"},
|
134 |
+
{"event": "Multiple file modifications", "source": "File System Logs", "severity": "High"},
|
135 |
+
{"event": "Encryption library loaded", "source": "System Logs", "severity": "High"},
|
136 |
+
{"event": "Mass file type changes", "source": "Storage Logs", "severity": "Critical"},
|
137 |
+
{"event": "Backup deletion attempt", "source": "Backup Logs", "severity": "Critical"},
|
138 |
+
{"event": "Unusual IAM activity", "source": "IAM Logs", "severity": "Medium"},
|
139 |
+
{"event": "Recovery service disabled", "source": "System Logs", "severity": "High"},
|
140 |
+
{"event": "Ransom note created", "source": "File System Logs", "severity": "Critical"}
|
141 |
+
]
|
142 |
+
|
143 |
+
# Create timeline with timestamps
|
144 |
+
for i, event in enumerate(events):
|
145 |
+
event_time = base_time + datetime.timedelta(minutes=i*15)
|
146 |
+
timeline_data.append({
|
147 |
+
"timestamp": event_time.isoformat(),
|
148 |
+
"event": event["event"],
|
149 |
+
"source": event["source"],
|
150 |
+
"cloud_provider": cloud_provider,
|
151 |
+
"severity": event["severity"],
|
152 |
+
"case_id": case_info["case_id"]
|
153 |
+
})
|
154 |
+
|
155 |
+
# Create patterns data
|
156 |
+
patterns = []
|
157 |
+
if incident_type == "Unauthorized Access":
|
158 |
+
patterns = [
|
159 |
+
{"pattern": "Brute Force Login Attempt", "confidence": 0.85, "matched_events": 3},
|
160 |
+
{"pattern": "Privilege Escalation", "confidence": 0.92, "matched_events": 2}
|
161 |
+
]
|
162 |
+
elif incident_type == "Data Exfiltration":
|
163 |
+
patterns = [
|
164 |
+
{"pattern": "Data Staging Activity", "confidence": 0.88, "matched_events": 3},
|
165 |
+
{"pattern": "Exfiltration Over Alternative Protocol", "confidence": 0.76, "matched_events": 2}
|
166 |
+
]
|
167 |
+
else: # Ransomware
|
168 |
+
patterns = [
|
169 |
+
{"pattern": "Mass File Encryption", "confidence": 0.94, "matched_events": 4},
|
170 |
+
{"pattern": "Defense Evasion", "confidence": 0.81, "matched_events": 3}
|
171 |
+
]
|
172 |
+
|
173 |
+
# Create anomalies data
|
174 |
+
anomalies = []
|
175 |
+
if incident_type == "Unauthorized Access":
|
176 |
+
anomalies = [
|
177 |
+
{"anomaly": "Login from unusual location", "deviation": 3.6, "severity": "High"},
|
178 |
+
{"anomaly": "Off-hours access", "deviation": 2.8, "severity": "Medium"}
|
179 |
+
]
|
180 |
+
elif incident_type == "Data Exfiltration":
|
181 |
+
anomalies = [
|
182 |
+
{"anomaly": "Unusual data access volume", "deviation": 4.2, "severity": "High"},
|
183 |
+
{"anomaly": "Abnormal query pattern", "deviation": 3.1, "severity": "Medium"}
|
184 |
+
]
|
185 |
+
else: # Ransomware
|
186 |
+
anomalies = [
|
187 |
+
{"anomaly": "Unusual file system activity", "deviation": 4.7, "severity": "Critical"},
|
188 |
+
{"anomaly": "Suspicious process behavior", "deviation": 3.9, "severity": "High"}
|
189 |
+
]
|
190 |
+
|
191 |
+
# Save data to files
|
192 |
+
timeline_file = os.path.join(DEMO_EVIDENCE_DIR, f"{DEMO_CASE_ID}_timeline.json")
|
193 |
+
patterns_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_patterns.json")
|
194 |
+
anomalies_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_anomalies.json")
|
195 |
+
|
196 |
+
with open(timeline_file, 'w') as f:
|
197 |
+
json.dump(timeline_data, f, indent=2)
|
198 |
+
|
199 |
+
with open(patterns_file, 'w') as f:
|
200 |
+
json.dump(patterns, f, indent=2)
|
201 |
+
|
202 |
+
with open(anomalies_file, 'w') as f:
|
203 |
+
json.dump(anomalies, f, indent=2)
|
204 |
+
|
205 |
+
return {
|
206 |
+
"timeline": timeline_data,
|
207 |
+
"patterns": patterns,
|
208 |
+
"anomalies": anomalies,
|
209 |
+
"files": {
|
210 |
+
"timeline": timeline_file,
|
211 |
+
"patterns": patterns_file,
|
212 |
+
"anomalies": anomalies_file
|
213 |
+
}
|
214 |
+
}
|
215 |
+
|
216 |
+
def analyze_evidence(data):
|
217 |
+
"""Perform analysis on the evidence data"""
|
218 |
+
|
219 |
+
# If there's no timeline data, return empty results
|
220 |
+
if not data["timeline"]:
|
221 |
+
return {
|
222 |
+
"severity_counts": {},
|
223 |
+
"source_counts": {},
|
224 |
+
"charts": {
|
225 |
+
"analysis": None,
|
226 |
+
"timeline": None
|
227 |
+
}
|
228 |
+
}
|
229 |
+
|
230 |
+
# Convert timeline to DataFrame for analysis
|
231 |
+
timeline_df = pd.DataFrame(data["timeline"])
|
232 |
+
timeline_df["timestamp"] = pd.to_datetime(timeline_df["timestamp"])
|
233 |
+
|
234 |
+
# Sort by timestamp
|
235 |
+
timeline_df = timeline_df.sort_values("timestamp")
|
236 |
+
|
237 |
+
# Count events by severity
|
238 |
+
severity_counts = timeline_df["severity"].value_counts()
|
239 |
+
|
240 |
+
# Count events by source
|
241 |
+
source_counts = timeline_df["source"].value_counts()
|
242 |
+
|
243 |
+
# Create visualizations
|
244 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
|
245 |
+
|
246 |
+
# Severity pie chart
|
247 |
+
ax1.pie(severity_counts, labels=severity_counts.index, autopct='%1.1f%%',
|
248 |
+
colors=sns.color_palette("YlOrRd", len(severity_counts)))
|
249 |
+
ax1.set_title("Events by Severity")
|
250 |
+
|
251 |
+
# Source bar chart
|
252 |
+
sns.barplot(x=source_counts.values, y=source_counts.index, ax=ax2, palette="viridis")
|
253 |
+
ax2.set_title("Events by Source")
|
254 |
+
ax2.set_xlabel("Count")
|
255 |
+
|
256 |
+
# Save the figure
|
257 |
+
chart_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_analysis_charts.png")
|
258 |
+
plt.tight_layout()
|
259 |
+
plt.savefig(chart_file)
|
260 |
+
plt.close()
|
261 |
+
|
262 |
+
# Create a timeline visualization
|
263 |
+
plt.figure(figsize=(12, 6))
|
264 |
+
|
265 |
+
# Create a categorical y-axis based on source
|
266 |
+
sources = timeline_df["source"].unique()
|
267 |
+
source_map = {source: i for i, source in enumerate(sources)}
|
268 |
+
timeline_df["source_num"] = timeline_df["source"].map(source_map)
|
269 |
+
|
270 |
+
# Map severity to color
|
271 |
+
severity_colors = {
|
272 |
+
"Low": "green",
|
273 |
+
"Medium": "blue",
|
274 |
+
"High": "orange",
|
275 |
+
"Critical": "red"
|
276 |
+
}
|
277 |
+
colors = timeline_df["severity"].map(severity_colors)
|
278 |
+
|
279 |
+
# Plot the timeline
|
280 |
+
plt.scatter(timeline_df["timestamp"], timeline_df["source_num"], c=colors, s=100)
|
281 |
+
|
282 |
+
# Add event labels
|
283 |
+
for i, row in timeline_df.iterrows():
|
284 |
+
plt.text(row["timestamp"], row["source_num"], row["event"],
|
285 |
+
fontsize=8, ha="right", va="bottom", rotation=25)
|
286 |
+
|
287 |
+
plt.yticks(range(len(sources)), sources)
|
288 |
+
plt.xlabel("Time")
|
289 |
+
plt.ylabel("Event Source")
|
290 |
+
plt.title("Incident Timeline")
|
291 |
+
|
292 |
+
# Save the timeline
|
293 |
+
timeline_chart = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_timeline_chart.png")
|
294 |
+
plt.tight_layout()
|
295 |
+
plt.savefig(timeline_chart)
|
296 |
+
plt.close()
|
297 |
+
|
298 |
+
return {
|
299 |
+
"severity_counts": severity_counts.to_dict(),
|
300 |
+
"source_counts": source_counts.to_dict(),
|
301 |
+
"charts": {
|
302 |
+
"analysis": chart_file,
|
303 |
+
"timeline": timeline_chart
|
304 |
+
}
|
305 |
+
}
|
306 |
+
|
307 |
+
def generate_report(case_info, data, analysis, report_format):
|
308 |
+
"""Generate a report based on the analysis"""
|
309 |
+
|
310 |
+
# Create report content
|
311 |
+
report = {
|
312 |
+
"case_information": case_info,
|
313 |
+
"executive_summary": f"This report presents the findings of a forensic investigation into a {case_info['incident_type']} incident in {case_info['cloud_provider']} cloud environment.",
|
314 |
+
"timeline": data["timeline"],
|
315 |
+
"patterns_detected": data["patterns"],
|
316 |
+
"anomalies_detected": data["anomalies"],
|
317 |
+
"analysis_results": {
|
318 |
+
"severity_distribution": analysis.get("severity_counts", {}),
|
319 |
+
"source_distribution": analysis.get("source_counts", {})
|
320 |
+
},
|
321 |
+
"recommendations": [
|
322 |
+
"Implement multi-factor authentication for all privileged accounts",
|
323 |
+
"Review and restrict IAM permissions following principle of least privilege",
|
324 |
+
"Enable comprehensive logging across all cloud services",
|
325 |
+
"Implement automated alerting for suspicious activities",
|
326 |
+
"Conduct regular security assessments of cloud environments"
|
327 |
+
]
|
328 |
+
}
|
329 |
+
|
330 |
+
# Save report in requested format
|
331 |
+
if report_format == "JSON":
|
332 |
+
report_file = os.path.join(DEMO_REPORT_DIR, f"{DEMO_CASE_ID}_report.json")
|
333 |
+
with open(report_file, 'w') as f:
|
334 |
+
json.dump(report, f, indent=2)
|
335 |
+
else: # HTML
|
336 |
+
# Create a simple HTML report
|
337 |
+
html_content = f"""
|
338 |
+
<!DOCTYPE html>
|
339 |
+
<html>
|
340 |
+
<head>
|
341 |
+
<title>Forensic Analysis Report - {case_info['case_id']}</title>
|
342 |
+
<style>
|
343 |
+
body {{ font-family: Arial, sans-serif; margin: 40px; }}
|
344 |
+
h1, h2, h3 {{ color: #2c3e50; }}
|
345 |
+
.section {{ margin-bottom: 30px; }}
|
346 |
+
.severity-high {{ color: #e74c3c; }}
|
347 |
+
.severity-medium {{ color: #f39c12; }}
|
348 |
+
.severity-low {{ color: #27ae60; }}
|
349 |
+
table {{ border-collapse: collapse; width: 100%; }}
|
350 |
+
th, td {{ border: 1px solid #ddd; padding: 8px; text-align: left; }}
|
351 |
+
th {{ background-color: #f2f2f2; }}
|
352 |
+
tr:nth-child(even) {{ background-color: #f9f9f9; }}
|
353 |
+
.chart-container {{ display: flex; justify-content: center; margin: 20px 0; }}
|
354 |
+
.chart {{ max-width: 100%; height: auto; margin: 10px; }}
|
355 |
+
.message {{ background-color: #f8f9fa; padding: 15px; border-left: 5px solid #4e73df; margin-bottom: 20px; }}
|
356 |
+
</style>
|
357 |
+
</head>
|
358 |
+
<body>
|
359 |
+
<h1>Cloud Forensics Analysis Report</h1>
|
360 |
+
|
361 |
+
<div class="section">
|
362 |
+
<h2>Case Information</h2>
|
363 |
+
<p><strong>Case ID:</strong> {case_info['case_id']}</p>
|
364 |
+
<p><strong>Investigator:</strong> {case_info['investigator']}</p>
|
365 |
+
<p><strong>Organization:</strong> {case_info['organization']}</p>
|
366 |
+
<p><strong>Cloud Provider:</strong> {case_info['cloud_provider']}</p>
|
367 |
+
<p><strong>Incident Type:</strong> {case_info['incident_type']}</p>
|
368 |
+
<p><strong>Report Date:</strong> {datetime.datetime.now().strftime('%Y-%m-%d')}</p>
|
369 |
+
</div>
|
370 |
+
|
371 |
+
<div class="section">
|
372 |
+
<h2>Executive Summary</h2>
|
373 |
+
<p>{report['executive_summary']}</p>
|
374 |
+
"""
|
375 |
+
|
376 |
+
# Add message if using real data
|
377 |
+
if "message" in data:
|
378 |
+
html_content += f"""
|
379 |
+
<div class="mes
|
380 |
+
(Content truncated due to size limit. Use line ranges to read in chunks)
|
huggingface-space.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hugging Face Space Configuration
|
2 |
+
|
3 |
+
sdk_version: 3.0
|
4 |
+
app_file: app.py
|
5 |
+
pinned: false
|
6 |
+
license: mit
|
7 |
+
|
8 |
+
# Python dependencies
|
9 |
+
python: "3.9"
|
10 |
+
packages:
|
11 |
+
- gradio==3.50.2
|
12 |
+
- pandas==1.5.3
|
13 |
+
- numpy==1.24.3
|
14 |
+
- matplotlib==3.7.1
|
15 |
+
- seaborn==0.12.2
|
16 |
+
- pyyaml==6.0
|