CrypticallyRequie commited on
Commit
9754001
·
verified ·
1 Parent(s): c65e409

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -380
app.py DELETED
@@ -1,380 +0,0 @@
1
- import gradio as gr
2
- import os
3
- import json
4
- import datetime
5
- import pandas as pd
6
- import matplotlib.pyplot as plt
7
- import seaborn as sns
8
- import yaml
9
- import uuid
10
- import tempfile
11
- import shutil
12
-
13
- # Demo configuration
14
- DEMO_CASE_ID = f"DEMO-{uuid.uuid4().hex[:8]}"
15
- DEMO_OUTPUT_DIR = "demo_output"
16
- DEMO_EVIDENCE_DIR = os.path.join(DEMO_OUTPUT_DIR, "evidence")
17
- DEMO_ANALYSIS_DIR = os.path.join(DEMO_OUTPUT_DIR, "analysis")
18
- DEMO_REPORT_DIR = os.path.join(DEMO_OUTPUT_DIR, "reports")
19
-
20
- # Create directories if they don't exist
21
- os.makedirs(DEMO_EVIDENCE_DIR, exist_ok=True)
22
- os.makedirs(DEMO_ANALYSIS_DIR, exist_ok=True)
23
- os.makedirs(DEMO_REPORT_DIR, exist_ok=True)
24
-
25
- # Cloud provider connection functions
26
- def test_aws_connection(access_key, secret_key, region):
27
- """Test connection to AWS"""
28
- try:
29
- import boto3
30
- session = boto3.Session(
31
- aws_access_key_id=access_key,
32
- aws_secret_access_key=secret_key,
33
- region_name=region
34
- )
35
- sts = session.client('sts')
36
- identity = sts.get_caller_identity()
37
- return True, f"Successfully connected to AWS as {identity['Arn']}"
38
- except Exception as e:
39
- return False, f"Failed to connect to AWS: {str(e)}"
40
-
41
- def test_azure_connection(tenant_id, client_id, client_secret):
42
- """Test connection to Azure"""
43
- try:
44
- from azure.identity import ClientSecretCredential
45
- from azure.mgmt.resource import ResourceManagementClient
46
-
47
- credential = ClientSecretCredential(
48
- tenant_id=tenant_id,
49
- client_id=client_id,
50
- client_secret=client_secret
51
- )
52
-
53
- # Create a resource management client
54
- resource_client = ResourceManagementClient(credential, subscription_id)
55
-
56
- # List resource groups to test the connection
57
- resource_groups = list(resource_client.resource_groups.list())
58
- return True, f"Successfully connected to Azure. Found {len(resource_groups)} resource groups."
59
- except Exception as e:
60
- return False, f"Failed to connect to Azure: {str(e)}"
61
-
62
- def test_gcp_connection(service_account_json):
63
- """Test connection to GCP"""
64
- try:
65
- import json
66
- from google.oauth2 import service_account
67
- from google.cloud import storage
68
-
69
- # Create a temporary file to store the service account JSON
70
- fd, path = tempfile.mkstemp()
71
- try:
72
- with os.fdopen(fd, 'w') as tmp:
73
- tmp.write(service_account_json)
74
-
75
- # Create credentials from the service account file
76
- credentials = service_account.Credentials.from_service_account_file(path)
77
-
78
- # Create a storage client to test the connection
79
- storage_client = storage.Client(credentials=credentials)
80
-
81
- # List buckets to test the connection
82
- buckets = list(storage_client.list_buckets())
83
- return True, f"Successfully connected to GCP. Found {len(buckets)} storage buckets."
84
- finally:
85
- os.remove(path)
86
- except Exception as e:
87
- return False, f"Failed to connect to GCP: {str(e)}"
88
-
89
- # Sample data for demonstration
90
- def generate_sample_data(case_info, cloud_provider, incident_type, use_real_data=False, credentials=None):
91
- """Generate sample data for demonstration purposes or collect real data if credentials provided"""
92
-
93
- if use_real_data and credentials:
94
- # This would be where we implement real data collection using the provided credentials
95
- # For now, we'll return a message indicating this would use real data
96
- return {
97
- "timeline": [],
98
- "patterns": [],
99
- "anomalies": [],
100
- "files": {},
101
- "message": "In a production deployment, this would collect real data from your cloud provider."
102
- }
103
-
104
- # Create sample timeline data
105
- timeline_data = []
106
- base_time = datetime.datetime.now() - datetime.timedelta(days=1)
107
-
108
- # Different events based on incident type
109
- if incident_type == "Unauthorized Access":
110
- events = [
111
- {"event": "Failed login attempt", "source": "Authentication Logs", "severity": "Low"},
112
- {"event": "Successful login from unusual IP", "source": "Authentication Logs", "severity": "Medium"},
113
- {"event": "User privilege escalation", "source": "IAM Logs", "severity": "High"},
114
- {"event": "Access to sensitive data", "source": "Data Access Logs", "severity": "High"},
115
- {"event": "Configuration change", "source": "Configuration Logs", "severity": "Medium"},
116
- {"event": "New API key created", "source": "IAM Logs", "severity": "High"},
117
- {"event": "Data download initiated", "source": "Data Access Logs", "severity": "Critical"},
118
- {"event": "Unusual network traffic", "source": "Network Logs", "severity": "Medium"}
119
- ]
120
- elif incident_type == "Data Exfiltration":
121
- events = [
122
- {"event": "Large query executed", "source": "Database Logs", "severity": "Medium"},
123
- {"event": "Unusual data access pattern", "source": "Data Access Logs", "severity": "Medium"},
124
- {"event": "Large data transfer initiated", "source": "Network Logs", "severity": "High"},
125
- {"event": "Connection to unknown external endpoint", "source": "Network Logs", "severity": "High"},
126
- {"event": "Storage object permissions modified", "source": "Storage Logs", "severity": "Medium"},
127
- {"event": "Unusual user behavior", "source": "User Activity Logs", "severity": "Medium"},
128
- {"event": "Data archive created", "source": "Storage Logs", "severity": "Medium"},
129
- {"event": "Unusual egress traffic spike", "source": "Network Logs", "severity": "Critical"}
130
- ]
131
- else: # Ransomware
132
- events = [
133
- {"event": "Unusual process execution", "source": "System Logs", "severity": "Medium"},
134
- {"event": "Multiple file modifications", "source": "File System Logs", "severity": "High"},
135
- {"event": "Encryption library loaded", "source": "System Logs", "severity": "High"},
136
- {"event": "Mass file type changes", "source": "Storage Logs", "severity": "Critical"},
137
- {"event": "Backup deletion attempt", "source": "Backup Logs", "severity": "Critical"},
138
- {"event": "Unusual IAM activity", "source": "IAM Logs", "severity": "Medium"},
139
- {"event": "Recovery service disabled", "source": "System Logs", "severity": "High"},
140
- {"event": "Ransom note created", "source": "File System Logs", "severity": "Critical"}
141
- ]
142
-
143
- # Create timeline with timestamps
144
- for i, event in enumerate(events):
145
- event_time = base_time + datetime.timedelta(minutes=i*15)
146
- timeline_data.append({
147
- "timestamp": event_time.isoformat(),
148
- "event": event["event"],
149
- "source": event["source"],
150
- "cloud_provider": cloud_provider,
151
- "severity": event["severity"],
152
- "case_id": case_info["case_id"]
153
- })
154
-
155
- # Create patterns data
156
- patterns = []
157
- if incident_type == "Unauthorized Access":
158
- patterns = [
159
- {"pattern": "Brute Force Login Attempt", "confidence": 0.85, "matched_events": 3},
160
- {"pattern": "Privilege Escalation", "confidence": 0.92, "matched_events": 2}
161
- ]
162
- elif incident_type == "Data Exfiltration":
163
- patterns = [
164
- {"pattern": "Data Staging Activity", "confidence": 0.88, "matched_events": 3},
165
- {"pattern": "Exfiltration Over Alternative Protocol", "confidence": 0.76, "matched_events": 2}
166
- ]
167
- else: # Ransomware
168
- patterns = [
169
- {"pattern": "Mass File Encryption", "confidence": 0.94, "matched_events": 4},
170
- {"pattern": "Defense Evasion", "confidence": 0.81, "matched_events": 3}
171
- ]
172
-
173
- # Create anomalies data
174
- anomalies = []
175
- if incident_type == "Unauthorized Access":
176
- anomalies = [
177
- {"anomaly": "Login from unusual location", "deviation": 3.6, "severity": "High"},
178
- {"anomaly": "Off-hours access", "deviation": 2.8, "severity": "Medium"}
179
- ]
180
- elif incident_type == "Data Exfiltration":
181
- anomalies = [
182
- {"anomaly": "Unusual data access volume", "deviation": 4.2, "severity": "High"},
183
- {"anomaly": "Abnormal query pattern", "deviation": 3.1, "severity": "Medium"}
184
- ]
185
- else: # Ransomware
186
- anomalies = [
187
- {"anomaly": "Unusual file system activity", "deviation": 4.7, "severity": "Critical"},
188
- {"anomaly": "Suspicious process behavior", "deviation": 3.9, "severity": "High"}
189
- ]
190
-
191
- # Save data to files
192
- timeline_file = os.path.join(DEMO_EVIDENCE_DIR, f"{DEMO_CASE_ID}_timeline.json")
193
- patterns_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_patterns.json")
194
- anomalies_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_anomalies.json")
195
-
196
- with open(timeline_file, 'w') as f:
197
- json.dump(timeline_data, f, indent=2)
198
-
199
- with open(patterns_file, 'w') as f:
200
- json.dump(patterns, f, indent=2)
201
-
202
- with open(anomalies_file, 'w') as f:
203
- json.dump(anomalies, f, indent=2)
204
-
205
- return {
206
- "timeline": timeline_data,
207
- "patterns": patterns,
208
- "anomalies": anomalies,
209
- "files": {
210
- "timeline": timeline_file,
211
- "patterns": patterns_file,
212
- "anomalies": anomalies_file
213
- }
214
- }
215
-
216
- def analyze_evidence(data):
217
- """Perform analysis on the evidence data"""
218
-
219
- # If there's no timeline data, return empty results
220
- if not data["timeline"]:
221
- return {
222
- "severity_counts": {},
223
- "source_counts": {},
224
- "charts": {
225
- "analysis": None,
226
- "timeline": None
227
- }
228
- }
229
-
230
- # Convert timeline to DataFrame for analysis
231
- timeline_df = pd.DataFrame(data["timeline"])
232
- timeline_df["timestamp"] = pd.to_datetime(timeline_df["timestamp"])
233
-
234
- # Sort by timestamp
235
- timeline_df = timeline_df.sort_values("timestamp")
236
-
237
- # Count events by severity
238
- severity_counts = timeline_df["severity"].value_counts()
239
-
240
- # Count events by source
241
- source_counts = timeline_df["source"].value_counts()
242
-
243
- # Create visualizations
244
- fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
245
-
246
- # Severity pie chart
247
- ax1.pie(severity_counts, labels=severity_counts.index, autopct='%1.1f%%',
248
- colors=sns.color_palette("YlOrRd", len(severity_counts)))
249
- ax1.set_title("Events by Severity")
250
-
251
- # Source bar chart
252
- sns.barplot(x=source_counts.values, y=source_counts.index, ax=ax2, palette="viridis")
253
- ax2.set_title("Events by Source")
254
- ax2.set_xlabel("Count")
255
-
256
- # Save the figure
257
- chart_file = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_analysis_charts.png")
258
- plt.tight_layout()
259
- plt.savefig(chart_file)
260
- plt.close()
261
-
262
- # Create a timeline visualization
263
- plt.figure(figsize=(12, 6))
264
-
265
- # Create a categorical y-axis based on source
266
- sources = timeline_df["source"].unique()
267
- source_map = {source: i for i, source in enumerate(sources)}
268
- timeline_df["source_num"] = timeline_df["source"].map(source_map)
269
-
270
- # Map severity to color
271
- severity_colors = {
272
- "Low": "green",
273
- "Medium": "blue",
274
- "High": "orange",
275
- "Critical": "red"
276
- }
277
- colors = timeline_df["severity"].map(severity_colors)
278
-
279
- # Plot the timeline
280
- plt.scatter(timeline_df["timestamp"], timeline_df["source_num"], c=colors, s=100)
281
-
282
- # Add event labels
283
- for i, row in timeline_df.iterrows():
284
- plt.text(row["timestamp"], row["source_num"], row["event"],
285
- fontsize=8, ha="right", va="bottom", rotation=25)
286
-
287
- plt.yticks(range(len(sources)), sources)
288
- plt.xlabel("Time")
289
- plt.ylabel("Event Source")
290
- plt.title("Incident Timeline")
291
-
292
- # Save the timeline
293
- timeline_chart = os.path.join(DEMO_ANALYSIS_DIR, f"{DEMO_CASE_ID}_timeline_chart.png")
294
- plt.tight_layout()
295
- plt.savefig(timeline_chart)
296
- plt.close()
297
-
298
- return {
299
- "severity_counts": severity_counts.to_dict(),
300
- "source_counts": source_counts.to_dict(),
301
- "charts": {
302
- "analysis": chart_file,
303
- "timeline": timeline_chart
304
- }
305
- }
306
-
307
- def generate_report(case_info, data, analysis, report_format):
308
- """Generate a report based on the analysis"""
309
-
310
- # Create report content
311
- report = {
312
- "case_information": case_info,
313
- "executive_summary": f"This report presents the findings of a forensic investigation into a {case_info['incident_type']} incident in {case_info['cloud_provider']} cloud environment.",
314
- "timeline": data["timeline"],
315
- "patterns_detected": data["patterns"],
316
- "anomalies_detected": data["anomalies"],
317
- "analysis_results": {
318
- "severity_distribution": analysis.get("severity_counts", {}),
319
- "source_distribution": analysis.get("source_counts", {})
320
- },
321
- "recommendations": [
322
- "Implement multi-factor authentication for all privileged accounts",
323
- "Review and restrict IAM permissions following principle of least privilege",
324
- "Enable comprehensive logging across all cloud services",
325
- "Implement automated alerting for suspicious activities",
326
- "Conduct regular security assessments of cloud environments"
327
- ]
328
- }
329
-
330
- # Save report in requested format
331
- if report_format == "JSON":
332
- report_file = os.path.join(DEMO_REPORT_DIR, f"{DEMO_CASE_ID}_report.json")
333
- with open(report_file, 'w') as f:
334
- json.dump(report, f, indent=2)
335
- else: # HTML
336
- # Create a simple HTML report
337
- html_content = f"""
338
- <!DOCTYPE html>
339
- <html>
340
- <head>
341
- <title>Forensic Analysis Report - {case_info['case_id']}</title>
342
- <style>
343
- body {{ font-family: Arial, sans-serif; margin: 40px; }}
344
- h1, h2, h3 {{ color: #2c3e50; }}
345
- .section {{ margin-bottom: 30px; }}
346
- .severity-high {{ color: #e74c3c; }}
347
- .severity-medium {{ color: #f39c12; }}
348
- .severity-low {{ color: #27ae60; }}
349
- table {{ border-collapse: collapse; width: 100%; }}
350
- th, td {{ border: 1px solid #ddd; padding: 8px; text-align: left; }}
351
- th {{ background-color: #f2f2f2; }}
352
- tr:nth-child(even) {{ background-color: #f9f9f9; }}
353
- .chart-container {{ display: flex; justify-content: center; margin: 20px 0; }}
354
- .chart {{ max-width: 100%; height: auto; margin: 10px; }}
355
- .message {{ background-color: #f8f9fa; padding: 15px; border-left: 5px solid #4e73df; margin-bottom: 20px; }}
356
- </style>
357
- </head>
358
- <body>
359
- <h1>Cloud Forensics Analysis Report</h1>
360
-
361
- <div class="section">
362
- <h2>Case Information</h2>
363
- <p><strong>Case ID:</strong> {case_info['case_id']}</p>
364
- <p><strong>Investigator:</strong> {case_info['investigator']}</p>
365
- <p><strong>Organization:</strong> {case_info['organization']}</p>
366
- <p><strong>Cloud Provider:</strong> {case_info['cloud_provider']}</p>
367
- <p><strong>Incident Type:</strong> {case_info['incident_type']}</p>
368
- <p><strong>Report Date:</strong> {datetime.datetime.now().strftime('%Y-%m-%d')}</p>
369
- </div>
370
-
371
- <div class="section">
372
- <h2>Executive Summary</h2>
373
- <p>{report['executive_summary']}</p>
374
- """
375
-
376
- # Add message if using real data
377
- if "message" in data:
378
- html_content += f"""
379
- <div class="mes
380
- (Content truncated due to size limit. Use line ranges to read in chunks)