File size: 3,804 Bytes
ae71d4b
 
 
 
27a58ec
ae71d4b
 
 
6e9b076
ae71d4b
 
6e9b076
ae71d4b
 
 
 
9483da5
 
ae71d4b
 
 
b68b40e
9483da5
9d22775
b68b40e
 
 
ae71d4b
32fb746
ae71d4b
 
 
9483da5
 
a4591c0
27fd4f5
bbb7e65
 
 
9483da5
a19b34c
 
ae71d4b
 
bbb7e65
ae71d4b
 
 
 
 
 
 
 
 
 
a1ec3a4
ae71d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34194
 
 
9483da5
 
6a34194
ae71d4b
 
 
 
 
9483da5
 
 
 
27fd4f5
 
caaf71e
867b7ff
ae71d4b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
import librosa
import numpy as np
import torch
import requests

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan

checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")

speaker_embeddings = {
    "BDL": "spkemb/cmu_us_bdl_arctic-wav-arctic_a0009.npy",
    "CLB": "spkemb/cmu_us_clb_arctic-wav-arctic_a0144.npy",
    "KSP": "spkemb/cmu_us_ksp_arctic-wav-arctic_b0087.npy",
    "RMS": "spkemb/cmu_us_rms_arctic-wav-arctic_b0353.npy",
    "SLT": "spkemb/cmu_us_slt_arctic-wav-arctic_a0508.npy",
}

def getNews(search_key):
    return requests.get ("https://newsapi.org/v2/everything?q=" +search_key+ "&pagesize=3&apiKey=3bca07c913ec4703a23f6ba03e15b30b").content.decode("utf-8")

def getHeadlines():
    return requests.get ("https://newsapi.org/v2/top-headlines?country=us&apiKey=3bca07c913ec4703a23f6ba03e15b30b").content.decode("utf-8")


def predict(text, preset):
    if len(text.strip()) == 0:
        return (16000, np.zeros(0).astype(np.int16))

    # text = getNews ()
    # inputs = processor(text=text, return_tensors="pt")
    inputs = processor(text=getNews(text), return_tensors="pt")

    # limit input length
    input_ids = inputs["input_ids"]
    input_ids = input_ids[..., :model.config.max_text_positions]

    speaker_embedding = np.load("spkemb/cmu_us_bdl_arctic-wav-arctic_a0009.npy")
   
    speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (16000, speech)


title = "SpeechT5: Speech Synthesis"

description = """
The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.
"""

article = """
<div style='margin:20px auto;'>

<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> |
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> |
<a href="https://huggingface.co/mechanicalsea/speecht5-tts">original weights</a></p>

<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p>

</div>
"""

examples = [
    ["It is not in the stars to hold our destiny but in ourselves.", "BDL (male)"],
    ["The octopus and Oliver went to the opera in October.", "CLB (female)"],
    ["She sells seashells by the seashore. I saw a kitten eating chicken in the kitchen.", "RMS (male)"],
    ["Brisk brave brigadiers brandished broad bright blades, blunderbusses, and bludgeons—balancing them badly.", "SLT (female)"],
    ["A synonym for cinnamon is a cinnamon synonym.", "BDL (male)"],
    ["How much wood would a woodchuck chuck if a woodchuck could chuck wood? He would chuck, he would, as much as he could, and chuck as much wood as a woodchuck would if a woodchuck could chuck wood.", "CLB (female)"],
]

gr.Interface(
    fn=predict,
    inputs=[
        gr.Text(label="Input Text"),
        gr.Radio(label="Preset", choices=[
            "US",
            "International",
            "Technology",
            "KPop",
            "Surprise Me!"
        ], value="KPop"),
    ],
    outputs=[
        gr.Audio(label="Generated Speech", type="numpy"),
    ],
    title=title,
    description=description,
    article=article,
    examples=examples,
).launch()