File size: 9,858 Bytes
c917d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import asyncio
from pathlib import Path
import pandas as pd
from typing import Tuple, Optional
from graphrag.config import GraphRagConfig, load_config, resolve_paths
from graphrag.index.create_pipeline_config import create_pipeline_config
from graphrag.logging import PrintProgressReporter
from graphrag.utils.storage import _create_storage, _load_table_from_storage
import graphrag.api as api


class StreamlitProgressReporter(PrintProgressReporter):
    def __init__(self, placeholder):
        super().__init__("")
        self.placeholder = placeholder

    def success(self, message: str):
        self.placeholder.success(message)


def _resolve_parquet_files(
    root_dir: str,
    config: GraphRagConfig,
    parquet_list: list[str],
    optional_list: list[str],
) -> dict[str, pd.DataFrame]:
    """Read parquet files to a dataframe dict."""
    dataframe_dict = {}
    pipeline_config = create_pipeline_config(config)
    storage_obj = _create_storage(root_dir=root_dir, config=pipeline_config.storage)

    for parquet_file in parquet_list:
        df_key = parquet_file.split(".")[0]
        df_value = asyncio.run(
            _load_table_from_storage(name=parquet_file, storage=storage_obj)
        )
        dataframe_dict[df_key] = df_value

    for optional_file in optional_list:
        file_exists = asyncio.run(storage_obj.has(optional_file))
        df_key = optional_file.split(".")[0]
        if file_exists:
            df_value = asyncio.run(
                _load_table_from_storage(name=optional_file, storage=storage_obj)
            )
            dataframe_dict[df_key] = df_value
        else:
            dataframe_dict[df_key] = None

    return dataframe_dict


def run_global_search(
    config_filepath: Optional[str],
    data_dir: Optional[str],
    root_dir: str,
    community_level: int,
    response_type: str,
    streaming: bool,
    query: str,
    progress_placeholder,
) -> Tuple[str, dict]:
    """Perform a global search with a given query."""
    root = Path(root_dir).resolve()
    config = load_config(root, config_filepath)
    reporter = StreamlitProgressReporter(progress_placeholder)

    config.storage.base_dir = data_dir or config.storage.base_dir
    resolve_paths(config)

    dataframe_dict = _resolve_parquet_files(
        root_dir=root_dir,
        config=config,
        parquet_list=[
            "create_final_nodes.parquet",
            "create_final_entities.parquet",
            "create_final_community_reports.parquet",
        ],
        optional_list=[],
    )

    final_nodes: pd.DataFrame = dataframe_dict["create_final_nodes"]
    final_entities: pd.DataFrame = dataframe_dict["create_final_entities"]
    final_community_reports: pd.DataFrame = dataframe_dict[
        "create_final_community_reports"
    ]

    if streaming:

        async def run_streaming_search():
            full_response = ""
            context_data = None
            get_context_data = True
            try:
                async for stream_chunk in api.global_search_streaming(
                    config=config,
                    nodes=final_nodes,
                    entities=final_entities,
                    community_reports=final_community_reports,
                    community_level=community_level,
                    response_type=response_type,
                    query=query,
                ):
                    if get_context_data:
                        context_data = stream_chunk
                        get_context_data = False
                    else:
                        full_response += stream_chunk
                        progress_placeholder.markdown(full_response)
            except Exception as e:
                progress_placeholder.error(f"Error during streaming search: {e}")
                return None, None

            return full_response, context_data

        result = asyncio.run(run_streaming_search())
        if result is None:
            return "", {}  # Graceful fallback
        return result

    # Non-streaming logic
    try:
        response, context_data = asyncio.run(
            api.global_search(
                config=config,
                nodes=final_nodes,
                entities=final_entities,
                community_reports=final_community_reports,
                community_level=community_level,
                response_type=response_type,
                query=query,
            )
        )
        reporter.success(f"Global Search Response:\n{response}")
        return response, context_data
    except Exception as e:
        progress_placeholder.error(f"Error during global search: {e}")
        return "", {}  # Graceful fallback


def run_local_search(
    config_filepath: Optional[str],
    data_dir: Optional[str],
    root_dir: str,
    community_level: int,
    response_type: str,
    streaming: bool,
    query: str,
    progress_placeholder,
) -> Tuple[str, dict]:
    """Perform a local search with a given query."""
    root = Path(root_dir).resolve()
    config = load_config(root, config_filepath)
    reporter = StreamlitProgressReporter(progress_placeholder)

    config.storage.base_dir = data_dir or config.storage.base_dir
    resolve_paths(config)

    dataframe_dict = _resolve_parquet_files(
        root_dir=root_dir,
        config=config,
        parquet_list=[
            "create_final_nodes.parquet",
            "create_final_community_reports.parquet",
            "create_final_text_units.parquet",
            "create_final_relationships.parquet",
            "create_final_entities.parquet",
        ],
        optional_list=["create_final_covariates.parquet"],
    )

    final_nodes: pd.DataFrame = dataframe_dict["create_final_nodes"]
    final_community_reports: pd.DataFrame = dataframe_dict[
        "create_final_community_reports"
    ]
    final_text_units: pd.DataFrame = dataframe_dict["create_final_text_units"]
    final_relationships: pd.DataFrame = dataframe_dict["create_final_relationships"]
    final_entities: pd.DataFrame = dataframe_dict["create_final_entities"]
    final_covariates: Optional[pd.DataFrame] = dataframe_dict["create_final_covariates"]

    if streaming:

        async def run_streaming_search():
            full_response = ""
            context_data = None
            get_context_data = True
            async for stream_chunk in api.local_search_streaming(
                config=config,
                nodes=final_nodes,
                entities=final_entities,
                community_reports=final_community_reports,
                text_units=final_text_units,
                relationships=final_relationships,
                covariates=final_covariates,
                community_level=community_level,
                response_type=response_type,
                query=query,
            ):
                if get_context_data:
                    context_data = stream_chunk
                    get_context_data = False
                else:
                    full_response += stream_chunk
                    progress_placeholder.markdown(full_response)
            return full_response, context_data

        return asyncio.run(run_streaming_search())

    response, context_data = asyncio.run(
        api.local_search(
            config=config,
            nodes=final_nodes,
            entities=final_entities,
            community_reports=final_community_reports,
            text_units=final_text_units,
            relationships=final_relationships,
            covariates=final_covariates,
            community_level=community_level,
            response_type=response_type,
            query=query,
        )
    )
    reporter.success(f"Local Search Response:\n{response}")
    return response, context_data


def run_drift_search(
    config_filepath: Optional[str],
    data_dir: Optional[str],
    root_dir: str,
    community_level: int,
    response_type: str,
    streaming: bool,
    query: str,
    progress_placeholder,
) -> Tuple[str, dict]:
    """Perform a DRIFT search with a given query."""
    root = Path(root_dir).resolve()
    config = load_config(root, config_filepath)
    reporter = StreamlitProgressReporter(progress_placeholder)

    config.storage.base_dir = data_dir or config.storage.base_dir
    resolve_paths(config)

    dataframe_dict = _resolve_parquet_files(
        root_dir=root_dir,
        config=config,
        parquet_list=[
            "create_final_nodes.parquet",
            "create_final_entities.parquet",
            "create_final_community_reports.parquet",
            "create_final_text_units.parquet",
            "create_final_relationships.parquet",
        ],
        optional_list=[],  # Remove covariates as it's not supported
    )

    final_nodes: pd.DataFrame = dataframe_dict["create_final_nodes"]
    final_entities: pd.DataFrame = dataframe_dict["create_final_entities"]
    final_community_reports: pd.DataFrame = dataframe_dict[
        "create_final_community_reports"
    ]
    final_text_units: pd.DataFrame = dataframe_dict["create_final_text_units"]
    final_relationships: pd.DataFrame = dataframe_dict["create_final_relationships"]

    # Note: DRIFT search doesn't support streaming
    if streaming:
        progress_placeholder.warning(
            "Streaming is not supported for DRIFT search. Using standard search instead."
        )

    response, context_data = asyncio.run(
        api.drift_search(
            config=config,
            nodes=final_nodes,
            entities=final_entities,
            community_reports=final_community_reports,
            text_units=final_text_units,
            relationships=final_relationships,
            community_level=community_level,
            query=query,
        )
    )
    reporter.success(f"DRIFT Search Response:\n{response}")
    return response, context_data