Spaces:
Sleeping
Sleeping
File size: 36,403 Bytes
c917d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
# wiki.py
# import streamlit_mermaid as stmd
import streamlit.components.v1 as components
import streamlit as st
from streamlit.components.v1 import html
def mermaid(code: str, height: int = 600) -> None:
components.html(
f"""
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<div style="height: {height}px">
<pre class="mermaid">
{code}
</pre>
</div>
<script type="module">
import mermaid from 'https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.esm.min.mjs';
mermaid.initialize({{ startOnLoad: true }});
</script>
""",
height=height,
)
def render_wiki_tab():
"""Render the Wiki tab content."""
st.header("Overview")
st.markdown(
"""
This documentation details the process I followed to achieve the assignment of using GraphRAG for indexing the first paragraphs of seven documents, embedding the full documents, performing initial search on the graph built from the first paragraphs, and retrieving answers from the full document content.
""")
st.markdown(
"""
This project implements a specialized document processing and querying system using GraphRAG for El Al baggage requirements\allowance documentation. The system processes first paragraphs separately from full documents, enabling graph-based search while maintaining comprehensive answer retrieval capabilities.
"""
)
st.markdown(
"""
### Implementation Process
Initially, I attempted to implement this using separate processing paths for first paragraphs and full documents, but I discovered a more elegant solution through GraphRAG's source tracking and processing order capabilities. Instead of maintaining separate indexes, I configured a unified approach where documents were processed together but with clear priorities and purposes.
I set up the configuration to treat first paragraphs with priority 1 for graph building and full documents with priority 2 for retrieval. This was achieved through careful configuration of source tracking, processing order, and source filters in the `settings.yaml` file, which allowed me to maintain the separation of concerns.
"""
)
st.markdown(
"""
### Final Implementation
The final implementation proved successful, creating a knowledge graph from the first paragraphs while maintaining access to full document content for comprehensive answers. I used entity types specific to airport security (like **Baggage Type**, **Dimension**, **Weight Limit**) and configured claim extraction to focus on relevant restrictions and allowances.
"""
)
st.markdown(
"""
### Using the Chat Application
The chat application provides an interactive interface to query the GraphRAG system. Here's how it works:
##### Getting Started:
- **Step 1**: Click on the chat tab.
- **Step 2**: Choose the desired search type from the sidebar:
- **Local Search**: Focuses on specific text chunks and direct relationships in the graph.
- **Global Search**: Analyzes the entire dataset at a high level using community summaries.
- **DRIFT Search**: Combines local and global search for complex queries requiring both detailed and contextual answers.
##### Submitting a Query:
- Enter your question in the input field at the bottom of the chat interface.
- Depending on the selected search type, the system will:
- Use the graph for initial navigation.
- Retrieve answers from full documents for comprehensive responses.
##### Viewing Results:
- The assistant's response appears in the chat window, formatted for clarity.
##### Key Features:
- **Streaming Responses**: Responses are displayed in real-time for supported search types.
- **Session History**: Previous queries and responses are retained within the session for reference.
##### Example Queries:
- "What are the liquid restrictions for carry-on bags?"
- "How do pet carrier size restrictions compare to regular carry-on limits?"
"""
)
with st.expander("Architecture", expanded=False):
st.markdown(
"""
The architecture of the system is designed to process data through multiple stages, including input preparation, processing, and search functionalities. Below is a detailed diagram illustrating the workflow of the system:
"""
)
mermaid_code = """
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#1E90FF', 'edgeLabelBackground': '#FFFFFF', 'secondaryColor': '#F0F8FF', 'tertiaryColor': '#FFFFFF', 'primaryTextColor': '#000000'}}}%%
graph TD
subgraph Input
FP[First Paragraphs] --> P[Processing]
FD[Full Documents] --> P
end
subgraph Processing
P --> IE[Entity Extraction]
P --> CD[Community Detection]
P --> E[Embeddings Generation]
IE --> G[Graph Construction]
CD --> G
E --> VS[Vector Store]
end
subgraph Search
Q[Query] --> DS[DRIFT Search]
DS --> GS[Graph Search]
DS --> FR[Full Retrieval]
GS --> VS
FR --> VS
GS --> A[Answer Generation]
FR --> A
end
"""
mermaid(mermaid_code, height=600)
with st.expander("Graph Analysis", expanded=False):
st.markdown("### System Components Breakdown:")
mermaid_code = """
pie
title "System Components"
"Documents" : 14
"Text Units" : 36
"Entities" : 315
"Relationships" : 372
"Communities" : 66
"""
mermaid(mermaid_code, height=500)
# Description and graph statistics
st.markdown(
"""
### Knowledge Graph Visualization
The graph displayed below represents the relationships between various entities extracted from the input data. Nodes in the graph correspond to entities like "Documents," "Policies," and "Restrictions," while edges represent the relationships or connections between these entities. The graph is constructed using the extracted entities and relationships, processed through NetworkX, and visualized with Pyvis.
**Process of Creation**:
- **Data Preparation**: Entities and relationships are extracted and saved as `create_final_nodes.parquet` and `create_final_relationships.parquet` files, respectively.
- **Graph Construction**: Using NetworkX, nodes and edges are added based on the extracted data.
- **Visualization**: Pyvis is used to create an interactive visualization with options like physics-based layout, node grouping, and hover effects.
The resulting graph provides insights into the data's structure, including:
- Node type distribution
- Community detection levels
- Connectivity patterns
Explore the graph below to understand the relationships between key entities.
"""
)
# Load and display the graph visualization (HTML file)
with open("knowledge_graph.html", "r") as f:
html_content = f.read()
st.components.v1.html(html_content, height=800)
# Graph statistics
st.markdown(
"""
### Graph Statistics:
* **Number of nodes:** 427
* **Number of edges:** 453
#### Node Type Distribution:
| Node Type | Distribution |
|-----------------------|--------------|
| REQUIRED DOCUMENT | 39 |
| SERVICE TYPE | 35 |
| POLICY | 30 |
| RESTRICTION | 27 |
| SPECIAL ITEM | 26 |
| PROHIBITED ITEM | 23 |
| AIRPORT | 22 |
| BAGGAGE TYPE | 21 |
| SERVICE LOCATION | 18 |
| DANGEROUS GOOD | 14 |
| ALLOWANCE | 13 |
| GEO | 12 |
| MEASUREMENT UNIT | 11 |
| FEE STRUCTURE | 10 |
| LINEAR DIMENSION | 8 |
| TIME PERIOD | 8 |
| CABIN SECTION | 8 |
| WEIGHT | 8 |
| WEIGHT CATEGORY | 7 |
| AIRLINE | 7 |
| CITY | 7 |
| DIMENSION | 6 |
| VALUABLE ITEM | 5 |
| ROUTE TYPE | 5 |
| TRAVEL CLASS | 5 |
| ORGANIZATION | 5 |
| PASSENGER TYPE | 4 |
| RESTRICTED ITEM | 3 |
| CURRENCY | 2 |
| EXEMPTION | 2 |
| LABEL TYPE | 2 |
| MATERIAL TYPE | 2 |
| CARGO | 2 |
| MEMBERSHIP LEVEL | 2 |
| AIRCRAFT TYPE | 1 |
| REGION | 1 |
| COUNTRY | 1 |
| SIZE CATEGORY | 1 |
| WHEEL CONFIGURATION | 1 |
| TAG CATEGORY | 1 |
| GROUP CATEGORY | 1 |
#### Most Connected Nodes:
| Node | Connections |
|--------------------|-------------|
| EL AL | 49 |
| ANIMAL | 29 |
| CHECKED BAGGAGE | 25 |
| BAGGAGE | 21 |
| PET | 19 |
"""
)
with st.expander("Implementation Results", expanded=False):
st.markdown(
"""
### Document Processing
* **Total Documents**: 14 (7 first paragraphs + 7 full documents)
* **Text Units**: 36
* **Entities**: 315
* **Relationships**: 372
* **Communities**: 66 across 4 levels
### Community Structure
* **Level 0**: 11 communities
* **Level 1**: 44 communities
* **Level 2**: 9 communities
* **Level 3**: 2 communities
"""
)
st.markdown("### System Operation Flow")
mermaid_code = """
sequenceDiagram
participant U as User
participant Q as Query Engine
participant G as Graph Search
participant V as Vector Store
participant D as Document Retrieval
U->>Q: Submit Query
Q->>G: Search in First Paragraph Graph
G->>V: Lookup Relevant Entities
V->>D: Retrieve Full Content
D->>Q: Return Comprehensive Answer
Q->>U: Present Response
"""
mermaid(mermaid_code, height=400)
with st.expander("Implementation Details", expanded=False):
st.markdown(
"""
The implementation of the system follows a processing pipeline that integrates data from the first paragraphs and full documents, creating a unified structure for efficient querying. Below is the pipeline representation:
"""
)
mermaid_code = """
flowchart TB
subgraph First Paragraphs
FP[Load First Paragraphs] --> EP[Extract Entities]
EP --> RP[Build Relationships]
RP --> CP[Create Communities]
end
subgraph Full Documents
FD[Load Full Documents] --> CH[Chunk Documents]
CH --> EF[Generate Embeddings]
end
subgraph Integration
CP --> VS[(Vector Store)]
EF --> VS
end
subgraph Search
Q[Query] --> GS[Graph Search]
GS --> VS
VS --> RD[Retrieve Details]
RD --> AG[Answer Generation]
end
"""
mermaid(mermaid_code, height=800)
with st.expander("Requirements Fulfillment", expanded=False):
st.markdown(
"""
### Requirements Fulfillment
**First Paragraph Processing**: β
* Implemented through `source_filter` and `processing_order`
* Verified by entity and relationship extraction
**Full Document Embeddings**: β
* Stored in LanceDB
* Accessible for comprehensive retrieval
**Graph-Based Search**: β
* Communities and relationships established
* DRIFT search implemented
**Complete Answer Retrieval**: β
* Source priority configuration
* Full document content available
### Performance Metrics
* **Indexing Speed**: 212.44 seconds total
* **Graph Density**: 372 relationships among 315 entities
* **Community Structure**: 4-level hierarchy
* **Vector Store Size**: 3 Lance files for different embedding types
"""
)
with st.expander("Achieving the Requirement", expanded=False):
st.markdown("### Source-Based Processing Control:")
st.markdown(
"""
```yaml
input:
source_tracking: true
processing_order:
- path: "first_paragraphs"
priority: 1
purpose: "graph_building"
- path: "full_documents"
priority: 2
purpose: "retrieval"
```
"""
)
st.markdown(
"""
This configuration ensures that GraphRAG knows which content is for graph building (first paragraphs) and which is for retrieval (full documents). The priority system makes sure first paragraphs are processed first and used primarily for the knowledge graph construction.
"""
)
st.markdown("### Targeted Entity and Claim Extraction:")
st.markdown(
"""
```yaml
entity_extraction:
source_filter: "first_paragraphs"
max_gleanings: 2
claim_extraction:
source_filter: "first_paragraphs"
```
"""
)
st.markdown(
"""
These filters ensure that the knowledge graph (entities, relationships, and claims) is built only from the first paragraphs. This is crucial because it means our initial search will only traverse the graph built from these first paragraphs, matching the requirement. The `max_gleanings: 2` allows for thorough extraction while maintaining precision.
"""
)
st.markdown("### Search Priority and Retrieval Control:")
st.markdown(
"""
```yaml
local_search:
source_priority:
graph_search: "first_paragraphs"
answer_retrieval: "full_documents"
text_unit_prop: 0.7
community_prop: 0.3
```
"""
)
st.markdown(
"""
This is where the magic happens - when a query is made, the system first searches using the graph built from first paragraphs (`graph_search: "first_paragraphs"`), but when it needs to construct the answer, it pulls the content from the full documents (`answer_retrieval: "full_documents"`).
The text_unit and community proportions ensure we're making good use of both the graph structure and the actual content. Looking at the output files we generated (`create_final_entities.parquet`, `create_final_relationships.parquet`, etc.), we can see this two-phase approach in action: the graph structure is built and stored separately from the full content, but they're linked through the unified vector store in LanceDB, allowing seamless transitions between graph search and content retrieval during query processing.
"""
)
with st.expander("Improvements to Make the Graph Creation Process Leaner and Faster", expanded=False):
st.markdown("### Optimization of Chunk Size and Overlap:")
st.markdown(
"""
```yaml
chunks:
size: 300 # Reduced from 500
overlap: 25 # Reduced from 50
group_by_columns: [id]
```
"""
)
st.markdown(
"""
**Rationale**:
- Smaller chunks with minimal overlap reduce token usage.
- Maintains context while processing fewer tokens per API call.
- Especially efficient for first paragraphs processing.
"""
)
st.markdown("### Streamline Entity Types and Claims:")
st.markdown(
"""
```yaml
entity_extraction:
entity_types:
- "Baggage"
- "Restriction"
- "Item"
max_gleanings: 1 # Reduced from 2
claim_extraction:
enabled: false # Disable unless absolutely necessary
```
"""
)
st.markdown(
"""
**Rationale**:
- Fewer entity types mean fewer extraction operations.
- Single gleaning pass is often sufficient.
- Claims processing is expensive and often redundant.
"""
)
st.markdown("### Optimize Graph Embeddings:")
st.markdown(
"""
```yaml
embed_graph:
enabled: true
num_walks: 50 # Reduced from 100
walk_length: 5 # Reduced from 10
window_size: 3 # Reduced from 5
iterations: 5 # Reduced from 10
```
"""
)
st.markdown(
"""
**Rationale**:
- Fewer random walks still capture essential graph structure.
- Shorter walks reduce computation time.
- Smaller window size focuses on immediate relationships.
"""
)
st.markdown("### Batch Processing and Parallelization:")
st.markdown(
"""
```yaml
embeddings:
async_mode: asyncio # Changed from threaded
batch_size: 32 # Increased from 16
batch_max_tokens: 8191
```
"""
)
st.markdown(
"""
**Rationale**:
- Asyncio performs better than threading for I/O-bound operations.
- Larger batch size reduces API calls.
- Maximizes throughput within token limits.
"""
)
st.markdown("### Community Structure Optimization:")
st.markdown(
"""
```yaml
cluster_graph:
max_cluster_size: 15 # Increased slightly
min_cluster_size: 3 # Added parameter
community_reports:
max_input_length: 2000 # Reduced from default
max_length: 1000 # Reduced summary length
```
"""
)
st.markdown(
"""
**Rationale**:
- Balanced cluster sizes reduce processing overhead.
- Shorter community reports still maintain essential information.
- Fewer tokens per report means faster processing.
"""
)
st.markdown("### Caching and Storage:")
st.markdown(
"""
```yaml
cache:
type: file
base_dir: "cache"
compression: true # Add compression
cache_embeddings: true
storage:
type: file
base_dir: "output"
compression: true # Add compression
```
"""
)
st.markdown(
"""
**Rationale**:
- Compression reduces I/O overhead.
- Caching embeddings prevents recomputation.
- File-based storage is faster than blob storage for local processing.
"""
)
st.markdown("### Disable Non-Essential Features:")
st.markdown(
"""
```yaml
umap:
enabled: false # Disable unless visualization needed
snapshots:
graphml: false
raw_entities: false
top_level_nodes: false
```
"""
)
st.markdown(
"""
**Rationale**:
- UMAP calculation is computationally expensive.
- Snapshots are useful for debugging but add overhead.
"""
)
st.markdown("### LLM Configuration Optimization:")
st.markdown(
"""
```yaml
llm:
concurrent_requests: 25
tokens_per_minute: 150000
requests_per_minute: 10000
max_retries: 5 # Reduced from 10
```
"""
)
st.markdown(
"""
**Rationale**:
- Balanced concurrency prevents rate limiting.
- Fewer retries reduce waiting time.
- Token and request limits prevent throttling.
"""
)
with st.expander("Query Types", expanded=False):
st.markdown("### Local Search:")
st.markdown(
"""
```yaml
local_search:
text_unit_prop: 0.7 # Focus on specific text chunks
community_prop: 0.3 # Some consideration of community context
top_k_mapped_entities: 15
source_priority:
graph_search: "first_paragraphs"
answer_retrieval: "full_documents"
```
"""
)
st.markdown(
"""
**Best when**: Looking for specific baggage rules or restrictions
**Example Query**: "What are the liquid restrictions for carry-on bags?"
**How it works with our data**:
- Searches for entities in first paragraphs (like "liquid", "carry-on").
- Follows direct relationships in the graph.
- Retrieves detailed rules from full documents.
**Meets requirement?** Yes, but in a limited way - focuses on direct connections.
"""
)
st.markdown("### Global Search:")
st.markdown(
"""
```yaml
global_search:
max_tokens: 4000
data_max_tokens: 4000
min_score_threshold: 0.1
allow_general_knowledge: false
```
"""
)
st.markdown(
"""
**Best when**: Understanding overall policies or themes
**Example Query**: "What are the main types of baggage restrictions?"
**How it works with our data**:
- Looks at community summaries built from first paragraphs.
- Provides broader context about baggage policies.
- Pulls supporting details from full documents.
**Meets requirement?** Partially - good for overview but might miss specific connections.
"""
)
st.markdown("### DRIFT Search (Dynamic Reasoning and Inference with Flexible Traversal):")
st.markdown(
"""
```yaml
local_search:
source_priority:
graph_search: "first_paragraphs"
answer_retrieval: "full_documents"
```
"""
)
st.markdown(
"""
**Best when**: Complex queries requiring both specific details and context
**Example Query**: "How do pet carrier size restrictions compare to regular carry-on limits?"
**How it works with our data**:
- Starts with first paragraphs graph to understand relationships between:
- Pet carriers
- Regular carry-on bags
- Size restrictions
- Uses community understanding to find related policies.
- Retrieves specific details from full documents.
**Meets requirement?** Yes, most comprehensively.
"""
)
st.markdown("### Best Choice for Our Requirement:")
st.markdown(
"""
**DRIFT Search** is the most suitable because:
- It naturally implements our two-phase requirement:
- Initial search on graph (from first paragraphs).
- Answer retrieval from full documents.
- It can handle complex queries that need:
- Understanding of relationships (from graph).
- Specific details (from full documents).
- It can dynamically adjust between:
- Local search when specific rules are needed.
- Global search when context is important.
"""
)
with st.expander("Configuration: full `settings.yaml`", expanded=False):
st.markdown(
"""
```yaml
# Root configuration for GraphRAG, a system leveraging LLMs for advanced Retrieval Augmented Generation.
encoding_model: cl100k_base
# Specifies the model used for token encoding. The default 'cl100k_base' is common for OpenAI's text models,
# determining how text is tokenized into machine-readable units.
skip_workflows: []
# A list of workflows to skip during execution. Empty indicates all workflows are executed.
llm:
api_key: ${GRAPHRAG_API_KEY}
# Placeholder for the API key, replaced dynamically from environment variables.
# Ensures secure API access for LLM queries.
type: openai_chat
# Defines the type of LLM interface used. Here, it connects to OpenAI's chat-based API.
model: gpt-4o-mini
# Specifies the model variant to use.
model_supports_json: true
# Indicates whether the LLM natively supports JSON responses, useful for structured outputs.
max_tokens: 4000
# Maximum number of tokens in the output. Balances performance and context length.
temperature: 0
# Controls randomness in outputs. 0 means deterministic responses, often preferred for accuracy.
embeddings:
async_mode: threaded
# Asynchronous embedding computation mode. 'threaded' uses multi-threading for better performance.
batch_size: 16
# Number of data points processed per batch during embedding, balancing speed and resource use.
vector_store:
type: lancedb
# Database type used for storing vectorized embeddings. 'lancedb' supports efficient vector operations.
db_uri: 'output/lancedb'
# URI pointing to the database location where embeddings are stored.
container_name: default
# Logical name for the container storing vector data.
overwrite: true
# Whether to overwrite existing vectors. True allows updating the database during reruns.
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_embedding
model: text-embedding-3-small
# Dedicated LLM for embedding tasks. A smaller, specialized model is specified for embeddings.
chunks:
size: 500
# Number of tokens per chunk of text. Controls granularity for processing long documents.
overlap: 50
# Overlap between adjacent chunks to ensure continuity in analysis.
group_by_columns: [id]
# Groups data by 'id' before chunking, preserving document boundaries.
input:
type: file
file_type: text
base_dir: "input"
file_pattern: ".*\\.txt$"
recursive: true
source_tracking: true
processing_order:
- path: "first_paragraphs"
priority: 1
purpose: "graph_building"
- path: "full_documents"
priority: 2
purpose: "retrieval"
# Specifies the data source for ingestion:
# - Input is file-based text.
# - Reads files recursively from "input" directory matching '.txt' files.
# - Prioritizes "first_paragraphs" for graph building and full documents for retrieval.
entity_extraction:
prompt: "prompts/entity_extraction.txt"
# Path to the custom prompt used for entity extraction tasks.
entity_types:
- "Baggage Type"
- "Dimension"
- "Linear Dimension"
- "Weight"
- "Material Type"
- "Wheel Configuration"
- "Measurement Unit"
- "Size Category"
- "Weight Category"
- "Airline"
- "Alliance"
- "Airport"
- "Route Type"
- "Travel Class"
- "Cabin Section"
- "Aircraft Type"
- "Restriction"
- "Exemption"
- "Policy"
- "Fee Structure"
- "Currency"
- "Allowance"
- "Special Item"
- "Prohibited Item"
- "Restricted Item"
- "Dangerous Good"
- "Fragile Item"
- "Valuable Item"
- "Required Document"
- "Label Type"
- "Tag Category"
- "Service Type"
- "Handler Role"
- "Service Location"
- "Time Period"
- "Passenger Type"
- "Membership Level"
- "Group Category"
# Defines the types of entities the system should extract.
max_gleanings: 2
# Maximum number of re-processing rounds to refine entity detection.
source_filter: "first_paragraphs"
# Restricts extraction to text from "first_paragraphs," optimizing focus.
claim_extraction:
enabled: true
# Enables claim extraction, capturing specific conditions or assertions from text.
claim_types:
- "Basic Size Restriction"
- "Oversize Condition"
- "Weight Limit Standard"
- "Overweight Condition"
- "Combined Dimension Limit"
- "Cabin Storage Requirement"
- "Standard Fee"
- "Excess Fee"
- "Oversize Fee"
- "Overweight Fee"
- "Special Handling Fee"
- "Season Surcharge"
- "Route-Specific Fee"
- "Multi-Piece Pricing"
- "Fee Waiver Condition"
- "Basic Allowance"
- "Class-Based Allowance"
- "Status-Based Allowance"
- "Route-Based Allowance"
- "Special Group Allowance"
- "Seasonal Allowance"
- "Equipment Allowance"
- "Prohibited Item Policy"
- "Restricted Item Condition"
- "Dangerous Goods Policy"
- "Special Item Restriction"
- "Packaging Requirement"
- "Declaration Requirement"
- "Check-in Deadline"
- "Special Handling Procedure"
- "Priority Handling Rule"
- "Transfer Handling Policy"
- "Delivery Service Policy"
- "Storage Policy"
- "Liability Limit"
- "Insurance Requirement"
- "Claim Procedure"
- "Compensation Policy"
- "Time Limit Policy"
- "Weather Restriction"
- "Seasonal Restriction"
- "Aircraft Limitation"
- "Route Restriction"
- "Connection Impact"
- "Tag Requirement"
- "Label Requirement"
- "Documentation Requirement"
- "Declaration Policy"
- "Handling Standard"
- "Service Level Agreement"
- "Priority Service Standard"
- "Delivery Time Standard"
- "Medical Exception"
- "Military Exception"
- "Diplomatic Exception"
- "Event Exception"
- "Emergency Exception"
# Types of claims to extract, covering diverse scenarios (e.g., fees, allowances).
prompt: "prompts/claim_extraction.txt"
description: "Extract baggage measurements, weight limits, and restrictions from airline documentation."
# Customizes the extraction logic for airline baggage policies.
max_gleanings: 2
source_filter: "first_paragraphs"
# Restricts claims to "first_paragraphs," mirroring entity extraction.
local_search:
text_unit_prop: 0.7
community_prop: 0.3
top_k_mapped_entities: 15
top_k_relationships: 15
max_tokens: 4000
source_priority:
graph_search: "first_paragraphs"
answer_retrieval: "full_documents"
# Configures search behavior:
# - Balances searches between individual text units and community-level summaries.
# - Limits results to top 15 entities and relationships for relevance.
global_search:
max_tokens: 4000
data_max_tokens: 4000
map_max_tokens: 1000
reduce_max_tokens: 2000
allow_general_knowledge: false
min_score_threshold: 0.1
concurrency: 10
# Defines query-wide global search capabilities:
# - Token limits for different operations.
# - Restricts non-specific general knowledge responses.
# - Handles up to 10 parallel queries.
embed_graph:
enabled: true
num_walks: 100
walk_length: 10
window_size: 5
iterations: 10
# Enables graph embedding (e.g., for node2vec):
# - Generates 100 random walks per node to learn embeddings.
umap:
enabled: true
n_neighbors: 15
min_dist: 0.1
n_components: 2
# Configures UMAP for dimensionality reduction and visualization.
storage:
type: file
base_dir: "output"
# Outputs processed data to local "output" directory.
cache:
type: file
base_dir: "cache"
# Stores temporary files in "cache."
reporting:
type: file
base_dir: "reports"
include_source_tracking: true
# Generates reports, including provenance for traceability.
```
"""
)
|