Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import streamlit as st
|
3 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
from langchain_community.vectorstores import FAISS
|
@@ -8,76 +9,111 @@ from langchain.memory import ConversationBufferMemory
|
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain_community.document_loaders import PyMuPDFLoader
|
10 |
|
11 |
-
#
|
|
|
12 |
st.title("β CafΓ© Eleven Ordering Assistant")
|
13 |
-
st.caption("Powered by LangChain & Streamlit")
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
|
|
22 |
@st.cache_resource
|
23 |
-
def
|
24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
embeddings = HuggingFaceEmbeddings(
|
26 |
model_name="sentence-transformers/all-mpnet-base-v2"
|
27 |
)
|
|
|
28 |
|
29 |
-
#
|
30 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
31 |
-
documents = text_splitter.split_documents(load_docs())
|
32 |
-
|
33 |
-
# Vectorstore
|
34 |
-
vectorstore = FAISS.from_documents(documents, embeddings)
|
35 |
-
|
36 |
-
# LLM (using free inference API)
|
37 |
llm = HuggingFaceHub(
|
38 |
repo_id="meta-llama/Llama-2-7b-chat-hf",
|
39 |
huggingfacehub_api_token=os.environ["HF_TOKEN"],
|
40 |
model_kwargs={
|
41 |
"temperature": 0.2,
|
42 |
-
"
|
43 |
}
|
44 |
)
|
45 |
|
46 |
-
#
|
47 |
-
memory = ConversationBufferMemory(
|
48 |
-
memory_key="chat_history",
|
49 |
-
return_messages=True,
|
50 |
-
output_key='answer'
|
51 |
-
)
|
52 |
-
|
53 |
-
# Chain
|
54 |
return ConversationalRetrievalChain.from_llm(
|
55 |
llm=llm,
|
56 |
retriever=vectorstore.as_retriever(),
|
57 |
-
memory=
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
-
#
|
62 |
-
if "messages" not in st.session_state:
|
63 |
-
st.session_state.messages = [
|
64 |
-
{"role": "assistant", "content": "Hi! Welcome to CafΓ© Eleven. What would you like to order today?"}
|
65 |
-
]
|
66 |
-
|
67 |
-
for message in st.session_state.messages:
|
68 |
-
with st.chat_message(message["role"]):
|
69 |
-
st.markdown(message["content"])
|
70 |
-
|
71 |
if prompt := st.chat_input("Your order..."):
|
72 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
73 |
-
|
74 |
-
st.markdown(prompt)
|
75 |
|
76 |
-
with st.
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from pathlib import Path
|
3 |
import streamlit as st
|
4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain_community.vectorstores import FAISS
|
|
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from langchain_community.document_loaders import PyMuPDFLoader
|
11 |
|
12 |
+
# App config
|
13 |
+
st.set_page_config(page_title="CafΓ© Eleven", page_icon="β")
|
14 |
st.title("β CafΓ© Eleven Ordering Assistant")
|
|
|
15 |
|
16 |
+
# Initialize chat
|
17 |
+
if "messages" not in st.session_state:
|
18 |
+
st.session_state.messages = [{
|
19 |
+
"role": "assistant",
|
20 |
+
"content": "Hi! Welcome to CafΓ© Eleven. What would you like to order today?"
|
21 |
+
}]
|
22 |
|
23 |
+
# Display messages
|
24 |
+
for msg in st.session_state.messages:
|
25 |
+
st.chat_message(msg["role"]).write(msg["content"])
|
26 |
+
|
27 |
+
# Chat functions
|
28 |
@st.cache_resource
|
29 |
+
def load_chain():
|
30 |
+
# Load all PDFs in directory
|
31 |
+
pdf_files = [str(p) for p in Path(".").glob("*.pdf")]
|
32 |
+
if not pdf_files:
|
33 |
+
st.error("No PDF files found! Please upload menu PDFs.")
|
34 |
+
st.stop()
|
35 |
+
|
36 |
+
# Load and split documents
|
37 |
+
docs = []
|
38 |
+
for pdf in pdf_files:
|
39 |
+
loader = PyMuPDFLoader(pdf)
|
40 |
+
docs.extend(loader.load())
|
41 |
+
|
42 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
43 |
+
chunk_size=1000,
|
44 |
+
chunk_overlap=200
|
45 |
+
)
|
46 |
+
splits = text_splitter.split_documents(docs)
|
47 |
+
|
48 |
+
# Setup vectorstore
|
49 |
embeddings = HuggingFaceEmbeddings(
|
50 |
model_name="sentence-transformers/all-mpnet-base-v2"
|
51 |
)
|
52 |
+
vectorstore = FAISS.from_documents(splits, embeddings)
|
53 |
|
54 |
+
# Setup LLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
llm = HuggingFaceHub(
|
56 |
repo_id="meta-llama/Llama-2-7b-chat-hf",
|
57 |
huggingfacehub_api_token=os.environ["HF_TOKEN"],
|
58 |
model_kwargs={
|
59 |
"temperature": 0.2,
|
60 |
+
"max_length": 256
|
61 |
}
|
62 |
)
|
63 |
|
64 |
+
# Create chain with system prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
return ConversationalRetrievalChain.from_llm(
|
66 |
llm=llm,
|
67 |
retriever=vectorstore.as_retriever(),
|
68 |
+
memory=ConversationBufferMemory(
|
69 |
+
memory_key="chat_history",
|
70 |
+
return_messages=True
|
71 |
+
),
|
72 |
+
condense_question_prompt="""
|
73 |
+
You are a friendly cafΓ© assistant. Your job is to:
|
74 |
+
1. Greet customers warmly
|
75 |
+
2. Help them place orders
|
76 |
+
3. Suggest menu items
|
77 |
+
4. Never make up items not in the menu
|
78 |
+
Current conversation:
|
79 |
+
{chat_history}
|
80 |
+
Question: {question}
|
81 |
+
"""
|
82 |
)
|
83 |
|
84 |
+
# Chat input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
if prompt := st.chat_input("Your order..."):
|
86 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
87 |
+
st.chat_message("user").write(prompt)
|
|
|
88 |
|
89 |
+
with st.spinner("Preparing your order..."):
|
90 |
+
try:
|
91 |
+
chain = load_chain()
|
92 |
+
response = chain({"question": prompt})["answer"]
|
93 |
+
|
94 |
+
# Format response cleanly
|
95 |
+
if "menu" in prompt.lower():
|
96 |
+
response = "Here are our offerings:\n" + response
|
97 |
+
elif "thank" in prompt.lower():
|
98 |
+
response = "You're welcome! " + response
|
99 |
+
|
100 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
101 |
+
st.chat_message("assistant").write(response)
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
st.error(f"Sorry, something went wrong: {str(e)}")
|
105 |
+
|
106 |
+
# PDF upload section
|
107 |
+
with st.sidebar:
|
108 |
+
st.subheader("Menu Management")
|
109 |
+
uploaded_files = st.file_uploader(
|
110 |
+
"Upload PDF menus",
|
111 |
+
type="pdf",
|
112 |
+
accept_multiple_files=True
|
113 |
+
)
|
114 |
+
if uploaded_files:
|
115 |
+
for file in uploaded_files:
|
116 |
+
with open(file.name, "wb") as f:
|
117 |
+
f.write(file.getbuffer())
|
118 |
+
st.success(f"Uploaded {len(uploaded_files)} menu(s)")
|
119 |
+
st.cache_resource.clear() # Refresh the vectorstore
|