Spaces:
Build error
Build error
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") | |
grammar_tokenizer = AutoTokenizer.from_pretrained("prithivida/grammar_error_correcter_v1") | |
grammar_model = AutoModelForSeq2SeqLM.from_pretrained("prithivida/grammar_error_correcter_v1") | |
import torch | |
import gradio as gr | |
def chat(message, history): | |
history = history or [] | |
if message.startswith("How many"): | |
response = random.randint(1, 10) | |
elif message.startswith("How"): | |
response = random.choice(["Great", "Good", "Okay", "Bad"]) | |
elif message.startswith("Where"): | |
response = random.choice(["Here", "There", "Somewhere"]) | |
else: | |
response = "I don't know" | |
history.append((message, response)) | |
return history, feedback(message) | |
def feedback(text): | |
tokenized_phrases = grammar_tokenizer([text], return_tensors='pt', padding=True) | |
corrections = grammar_model.generate(**tokenized_phrases) | |
corrections = grammar_tokenizer.batch_decode(corrections, skip_special_tokens=True) | |
print("The corrections are: ", corrections) | |
if corrections[0] == text: | |
feedback = f'Looks good! Keep up the good work' | |
else: | |
feedback = f'\'{corrections[0]}\' might be a little better' | |
return f'FEEDBACK: {feedback}' | |
iface = gr.Interface( | |
chat, | |
["text", "state"], | |
["chatbot", "text"], | |
allow_screenshot=False, | |
allow_flagging="never", | |
) | |
iface.launch() | |
new_user_input_ids = tokenizer.encode(text+tokenizer.eos_token, return_tensors='pt') | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids | |
# generated a response while limiting the total chat history to 1000 tokens, | |
chat_history_ids = model.generate(bot_input_ids, max_length=5000, pad_token_id=tokenizer.eos_token_id) | |
print("The text is ", [text]) | |
# pretty print last ouput tokens from bot | |
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
print("The outout is :", output) | |
text_session.append(output) |