from typing import Union import torch from .roma_models import roma_model, tiny_roma_v1_model weight_urls = { "romatch": { "outdoor": "https://github.com/Parskatt/storage/releases/download/roma/roma_outdoor.pth", "indoor": "https://github.com/Parskatt/storage/releases/download/roma/roma_indoor.pth", }, "tiny_roma_v1": { "outdoor": "https://github.com/Parskatt/storage/releases/download/roma/tiny_roma_v1_outdoor.pth", }, "dinov2": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth", #hopefully this doesnt change :D } def tiny_roma_v1_outdoor(device, weights = None, xfeat = None): if weights is None: weights = torch.hub.load_state_dict_from_url( weight_urls["tiny_roma_v1"]["outdoor"], map_location=device) if xfeat is None: xfeat = torch.hub.load( 'verlab/accelerated_features', 'XFeat', pretrained = True, top_k = 4096).net return tiny_roma_v1_model(weights = weights, xfeat = xfeat).to(device) def roma_outdoor(device, weights=None, dinov2_weights=None, coarse_res: Union[int,tuple[int,int]] = 560, upsample_res: Union[int,tuple[int,int]] = 864, amp_dtype: torch.dtype = torch.float16): if isinstance(coarse_res, int): coarse_res = (coarse_res, coarse_res) if isinstance(upsample_res, int): upsample_res = (upsample_res, upsample_res) if str(device) == 'cpu': amp_dtype = torch.float32 assert coarse_res[0] % 14 == 0, "Needs to be multiple of 14 for backbone" assert coarse_res[1] % 14 == 0, "Needs to be multiple of 14 for backbone" if weights is None: weights = torch.hub.load_state_dict_from_url(weight_urls["romatch"]["outdoor"], map_location=device) if dinov2_weights is None: dinov2_weights = torch.hub.load_state_dict_from_url(weight_urls["dinov2"], map_location=device) model = roma_model(resolution=coarse_res, upsample_preds=True, weights=weights,dinov2_weights = dinov2_weights,device=device, amp_dtype=amp_dtype) model.upsample_res = upsample_res print(f"Using coarse resolution {coarse_res}, and upsample res {model.upsample_res}") return model def roma_indoor(device, weights=None, dinov2_weights=None, coarse_res: Union[int,tuple[int,int]] = 560, upsample_res: Union[int,tuple[int,int]] = 864, amp_dtype: torch.dtype = torch.float16): if isinstance(coarse_res, int): coarse_res = (coarse_res, coarse_res) if isinstance(upsample_res, int): upsample_res = (upsample_res, upsample_res) assert coarse_res[0] % 14 == 0, "Needs to be multiple of 14 for backbone" assert coarse_res[1] % 14 == 0, "Needs to be multiple of 14 for backbone" if weights is None: weights = torch.hub.load_state_dict_from_url(weight_urls["romatch"]["indoor"], map_location=device) if dinov2_weights is None: dinov2_weights = torch.hub.load_state_dict_from_url(weight_urls["dinov2"], map_location=device) model = roma_model(resolution=coarse_res, upsample_preds=True, weights=weights,dinov2_weights = dinov2_weights,device=device, amp_dtype=amp_dtype) model.upsample_res = upsample_res print(f"Using coarse resolution {coarse_res}, and upsample res {model.upsample_res}") return model