File size: 12,775 Bytes
5f9d349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import torch
from argparse import ArgumentParser

from torch import nn
from torch.utils.data import ConcatDataset
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

import json
import wandb
from tqdm import tqdm

from romatch.benchmarks import MegadepthDenseBenchmark
from romatch.datasets.megadepth import MegadepthBuilder
from romatch.datasets.scannet import ScanNetBuilder
from romatch.losses.robust_loss import RobustLosses
from romatch.benchmarks import MegadepthDenseBenchmark, ScanNetBenchmark
from romatch.train.train import train_k_steps
from romatch.models.matcher import *
from romatch.models.transformer import Block, TransformerDecoder, MemEffAttention
from romatch.models.encoders import *
from romatch.checkpointing import CheckPoint

resolutions = {"low":(448, 448), "medium":(14*8*5, 14*8*5), "high":(14*8*6, 14*8*6)}

def get_model(pretrained_backbone=True, resolution = "medium", **kwargs):
    gp_dim = 512
    feat_dim = 512
    decoder_dim = gp_dim + feat_dim
    cls_to_coord_res = 64
    coordinate_decoder = TransformerDecoder(
        nn.Sequential(*[Block(decoder_dim, 8, attn_class=MemEffAttention) for _ in range(5)]), 
        decoder_dim, 
        cls_to_coord_res**2 + 1,
        is_classifier=True,
        amp = True,
        pos_enc = False,)
    dw = True
    hidden_blocks = 8
    kernel_size = 5
    displacement_emb = "linear"
    disable_local_corr_grad = True
    
    conv_refiner = nn.ModuleDict(
        {
            "16": ConvRefiner(
                2 * 512+128+(2*7+1)**2,
                2 * 512+128+(2*7+1)**2,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=128,
                local_corr_radius = 7,
                corr_in_other = True,
                amp = True,
                disable_local_corr_grad = disable_local_corr_grad,
                bn_momentum = 0.01,
            ),
            "8": ConvRefiner(
                2 * 512+64+(2*3+1)**2,
                2 * 512+64+(2*3+1)**2,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=64,
                local_corr_radius = 3,
                corr_in_other = True,
                amp = True,
                disable_local_corr_grad = disable_local_corr_grad,
                bn_momentum = 0.01,
            ),
            "4": ConvRefiner(
                2 * 256+32+(2*2+1)**2,
                2 * 256+32+(2*2+1)**2,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=32,
                local_corr_radius = 2,
                corr_in_other = True,
                amp = True,
                disable_local_corr_grad = disable_local_corr_grad,
                bn_momentum = 0.01,
            ),
            "2": ConvRefiner(
                2 * 64+16,
                128+16,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=16,
                amp = True,
                disable_local_corr_grad = disable_local_corr_grad,
                bn_momentum = 0.01,
            ),
            "1": ConvRefiner(
                2 * 9 + 6,
                24,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks = hidden_blocks,
                displacement_emb = displacement_emb,
                displacement_emb_dim = 6,
                amp = True,
                disable_local_corr_grad = disable_local_corr_grad,
                bn_momentum = 0.01,
            ),
        }
    )
    kernel_temperature = 0.2
    learn_temperature = False
    no_cov = True
    kernel = CosKernel
    only_attention = False
    basis = "fourier"
    gp16 = GP(
        kernel,
        T=kernel_temperature,
        learn_temperature=learn_temperature,
        only_attention=only_attention,
        gp_dim=gp_dim,
        basis=basis,
        no_cov=no_cov,
    )
    gps = nn.ModuleDict({"16": gp16})
    proj16 = nn.Sequential(nn.Conv2d(1024, 512, 1, 1), nn.BatchNorm2d(512))
    proj8 = nn.Sequential(nn.Conv2d(512, 512, 1, 1), nn.BatchNorm2d(512))
    proj4 = nn.Sequential(nn.Conv2d(256, 256, 1, 1), nn.BatchNorm2d(256))
    proj2 = nn.Sequential(nn.Conv2d(128, 64, 1, 1), nn.BatchNorm2d(64))
    proj1 = nn.Sequential(nn.Conv2d(64, 9, 1, 1), nn.BatchNorm2d(9))
    proj = nn.ModuleDict({
        "16": proj16,
        "8": proj8,
        "4": proj4,
        "2": proj2,
        "1": proj1,
        })
    displacement_dropout_p = 0.0
    gm_warp_dropout_p = 0.0
    decoder = Decoder(coordinate_decoder, 
                      gps, 
                      proj, 
                      conv_refiner, 
                      detach=True, 
                      scales=["16", "8", "4", "2", "1"], 
                      displacement_dropout_p = displacement_dropout_p,
                      gm_warp_dropout_p = gm_warp_dropout_p)
    h,w = resolutions[resolution]
    encoder = CNNandDinov2(
        cnn_kwargs = dict(
            pretrained=pretrained_backbone,
            amp = True),
        amp = True,
        use_vgg = True,
    )
    matcher = RegressionMatcher(encoder, decoder, h=h, w=w, alpha=1, beta=0,**kwargs)
    return matcher

def train(args):
    dist.init_process_group('nccl')
    #torch._dynamo.config.verbose=True
    gpus = int(os.environ['WORLD_SIZE'])
    # create model and move it to GPU with id rank
    rank = dist.get_rank()
    print(f"Start running DDP on rank {rank}")
    device_id = rank % torch.cuda.device_count()
    romatch.LOCAL_RANK = device_id
    torch.cuda.set_device(device_id)
    
    resolution = args.train_resolution
    wandb_log = not args.dont_log_wandb
    experiment_name = os.path.splitext(os.path.basename(__file__))[0]
    wandb_mode = "online" if wandb_log and rank == 0 and False else "disabled"
    wandb.init(project="romatch", entity=args.wandb_entity, name=experiment_name, reinit=False, mode = wandb_mode)
    checkpoint_dir = "workspace/checkpoints/"
    h,w = resolutions[resolution]
    model = get_model(pretrained_backbone=True, resolution=resolution, attenuate_cert = False).to(device_id)
    # Num steps
    global_step = 0
    batch_size = args.gpu_batch_size
    step_size = gpus*batch_size
    romatch.STEP_SIZE = step_size
    
    N = (32 * 250000)  # 250k steps of batch size 32
    # checkpoint every
    k = 25000 // romatch.STEP_SIZE

    # Data
    mega = MegadepthBuilder(data_root="data/megadepth", loftr_ignore=True, imc21_ignore = True)
    use_horizontal_flip_aug = True
    rot_prob = 0
    depth_interpolation_mode = "bilinear"
    megadepth_train1 = mega.build_scenes(
        split="train_loftr", min_overlap=0.01, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, rot_prob = rot_prob,
        ht=h,wt=w,
    )
    megadepth_train2 = mega.build_scenes(
        split="train_loftr", min_overlap=0.35, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, rot_prob = rot_prob,
        ht=h,wt=w,
    )
    megadepth_train = ConcatDataset(megadepth_train1 + megadepth_train2)
    mega_ws = mega.weight_scenes(megadepth_train, alpha=0.75)
    
    scannet = ScanNetBuilder(data_root="data/scannet")
    scannet_train = scannet.build_scenes(split="train", ht=h, wt=w, use_horizontal_flip_aug = use_horizontal_flip_aug)
    scannet_train = ConcatDataset(scannet_train)
    scannet_ws = scannet.weight_scenes(scannet_train, alpha=0.75)

    # Loss and optimizer
    depth_loss_scannet = RobustLosses(
        ce_weight=0.0, 
        local_dist={1:4, 2:4, 4:8, 8:8},
        local_largest_scale=8,
        depth_interpolation_mode=depth_interpolation_mode,
        alpha = 0.5,
        c = 1e-4,)
    # Loss and optimizer
    depth_loss_mega = RobustLosses(
        ce_weight=0.01, 
        local_dist={1:4, 2:4, 4:8, 8:8},
        local_largest_scale=8,
        depth_interpolation_mode=depth_interpolation_mode,
        alpha = 0.5,
        c = 1e-4,)
    parameters = [
        {"params": model.encoder.parameters(), "lr": romatch.STEP_SIZE * 5e-6 / 8},
        {"params": model.decoder.parameters(), "lr": romatch.STEP_SIZE * 1e-4 / 8},
    ]
    optimizer = torch.optim.AdamW(parameters, weight_decay=0.01)
    lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=[(9*N/romatch.STEP_SIZE)//10])
    megadense_benchmark = MegadepthDenseBenchmark("data/megadepth", num_samples = 1000, h=h,w=w)
    checkpointer = CheckPoint(checkpoint_dir, experiment_name)
    model, optimizer, lr_scheduler, global_step = checkpointer.load(model, optimizer, lr_scheduler, global_step)
    romatch.GLOBAL_STEP = global_step
    ddp_model = DDP(model, device_ids=[device_id], find_unused_parameters = False, gradient_as_bucket_view=True)
    grad_scaler = torch.cuda.amp.GradScaler(growth_interval=1_000_000)
    grad_clip_norm = 0.01
    for n in range(romatch.GLOBAL_STEP, N, k * romatch.STEP_SIZE):
        mega_sampler = torch.utils.data.WeightedRandomSampler(
            mega_ws, num_samples = batch_size * k, replacement=False
        )
        mega_dataloader = iter(
            torch.utils.data.DataLoader(
                megadepth_train,
                batch_size = batch_size,
                sampler = mega_sampler,
                num_workers = 8,
            )
        )
        scannet_ws_sampler = torch.utils.data.WeightedRandomSampler(
            scannet_ws, num_samples=batch_size * k, replacement=False
        )
        scannet_dataloader = iter(
            torch.utils.data.DataLoader(
                scannet_train,
                batch_size=batch_size,
                sampler=scannet_ws_sampler,
                num_workers=gpus * 8,
            )
        )
        for n_k in tqdm(range(n, n + 2 * k, 2),disable = romatch.RANK > 0):
            train_k_steps(
                n_k, 1, mega_dataloader, ddp_model, depth_loss_mega, optimizer, lr_scheduler, grad_scaler, grad_clip_norm = grad_clip_norm, progress_bar=False
            )
            train_k_steps(
                n_k + 1, 1, scannet_dataloader, ddp_model, depth_loss_scannet, optimizer, lr_scheduler, grad_scaler, grad_clip_norm = grad_clip_norm, progress_bar=False
            )
        checkpointer.save(model, optimizer, lr_scheduler, romatch.GLOBAL_STEP)
        wandb.log(megadense_benchmark.benchmark(model), step = romatch.GLOBAL_STEP)

def test_scannet(model, name, resolution, sample_mode):
    scannet_benchmark = ScanNetBenchmark("data/scannet")
    scannet_results = scannet_benchmark.benchmark(model)
    json.dump(scannet_results, open(f"results/scannet_{name}.json", "w"))

if __name__ == "__main__":
    import warnings
    warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
    warnings.filterwarnings('ignore')#, category=UserWarning)#, message='WARNING batched routines are designed for small sizes.')
    os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1" # For BF16 computations
    os.environ["OMP_NUM_THREADS"] = "16"
    
    import romatch
    parser = ArgumentParser()
    parser.add_argument("--test", action='store_true')
    parser.add_argument("--debug_mode", action='store_true')
    parser.add_argument("--dont_log_wandb", action='store_true')
    parser.add_argument("--train_resolution", default='medium')
    parser.add_argument("--gpu_batch_size", default=4, type=int)
    parser.add_argument("--wandb_entity", required = False)

    args, _ = parser.parse_known_args()
    romatch.DEBUG_MODE = args.debug_mode
    if not args.test:
        train(args)
    experiment_name = os.path.splitext(os.path.basename(__file__))[0]
    checkpoint_dir = "workspace/"
    checkpoint_name = checkpoint_dir + experiment_name + ".pth"
    test_resolution = "medium"
    sample_mode = "threshold_balanced"
    symmetric = True
    upsample_preds = False
    attenuate_cert = True

    model = get_model(pretrained_backbone=False, resolution = test_resolution, sample_mode = sample_mode, upsample_preds = upsample_preds, symmetric=symmetric, name=experiment_name, attenuate_cert = attenuate_cert)
    model = model.cuda()
    states = torch.load(checkpoint_name)
    model.load_state_dict(states["model"])
    test_scannet(model, experiment_name, resolution = test_resolution, sample_mode = sample_mode)