Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,21 +10,34 @@ model_name = "vennify/t5-base-grammar-correction"
|
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
|
13 |
-
def correct_text(text, max_length, num_beams, temperature, top_p):
|
14 |
inputs = tokenizer.encode(text, return_tensors="pt")
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
return corrected_text
|
25 |
|
26 |
|
27 |
-
def respond(message, history: list[tuple[str, str]], system_message, max_length, min_length, num_beams, temperature, top_p):
|
28 |
#messages = [{"role": "system", "content": system_message}]
|
29 |
|
30 |
#for val in history:
|
@@ -35,7 +48,7 @@ def respond(message, history: list[tuple[str, str]], system_message, max_length,
|
|
35 |
|
36 |
#messages.append({"role": "user", "content": message})
|
37 |
|
38 |
-
response = correct_text(message, max_length, min_length, num_beams, temperature, top_p)
|
39 |
yield response
|
40 |
|
41 |
"""
|
@@ -47,6 +60,7 @@ demo = gr.ChatInterface(
|
|
47 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
48 |
gr.Slider(minimum=1, maximum=2048, value=100, step=1, label="Max Length"),
|
49 |
gr.Slider(minimum=1, maximum=2048, value=0, step=1, label="Min Length"),
|
|
|
50 |
gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
|
13 |
+
def correct_text(text, max_length, max_new_tokens=0, min_length, num_beams, temperature, top_p):
|
14 |
inputs = tokenizer.encode(text, return_tensors="pt")
|
15 |
+
if max_new_tokens > 0:
|
16 |
+
outputs = model.generate(
|
17 |
+
inputs,
|
18 |
+
max_length=max_length,
|
19 |
+
max_new_tokens=max_new_tokens,
|
20 |
+
min_length=min_length,
|
21 |
+
num_beams=num_beams,
|
22 |
+
temperature=temperature,
|
23 |
+
top_p=top_p,
|
24 |
+
early_stopping=True
|
25 |
+
)
|
26 |
+
else:
|
27 |
+
outputs = model.generate(
|
28 |
+
inputs,
|
29 |
+
max_length=max_length,
|
30 |
+
min_length=min_length,
|
31 |
+
num_beams=num_beams,
|
32 |
+
temperature=temperature,
|
33 |
+
top_p=top_p,
|
34 |
+
early_stopping=True
|
35 |
+
)
|
36 |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
return corrected_text
|
38 |
|
39 |
|
40 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
|
41 |
#messages = [{"role": "system", "content": system_message}]
|
42 |
|
43 |
#for val in history:
|
|
|
48 |
|
49 |
#messages.append({"role": "user", "content": message})
|
50 |
|
51 |
+
response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
|
52 |
yield response
|
53 |
|
54 |
"""
|
|
|
60 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
61 |
gr.Slider(minimum=1, maximum=2048, value=100, step=1, label="Max Length"),
|
62 |
gr.Slider(minimum=1, maximum=2048, value=0, step=1, label="Min Length"),
|
63 |
+
gr.Slider(minimum=1, maximum=2048, value=0, step=1, label="Max New Tokens (optional)"),
|
64 |
gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"),
|
65 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
66 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|