ColeGuion commited on
Commit
911ff06
·
verified ·
1 Parent(s): 1e7eb99

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -11
app.py CHANGED
@@ -10,21 +10,34 @@ model_name = "vennify/t5-base-grammar-correction"
10
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
11
  tokenizer = AutoTokenizer.from_pretrained(model_name)
12
 
13
- def correct_text(text, max_length, num_beams, temperature, top_p):
14
  inputs = tokenizer.encode(text, return_tensors="pt")
15
- outputs = model.generate(
16
- inputs,
17
- max_length=max_length,
18
- num_beams=num_beams,
19
- temperature=temperature,
20
- top_p=top_p,
21
- early_stopping=True
22
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
24
  return corrected_text
25
 
26
 
27
- def respond(message, history: list[tuple[str, str]], system_message, max_length, min_length, num_beams, temperature, top_p):
28
  #messages = [{"role": "system", "content": system_message}]
29
 
30
  #for val in history:
@@ -35,7 +48,7 @@ def respond(message, history: list[tuple[str, str]], system_message, max_length,
35
 
36
  #messages.append({"role": "user", "content": message})
37
 
38
- response = correct_text(message, max_length, min_length, num_beams, temperature, top_p)
39
  yield response
40
 
41
  """
@@ -47,6 +60,7 @@ demo = gr.ChatInterface(
47
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
48
  gr.Slider(minimum=1, maximum=2048, value=100, step=1, label="Max Length"),
49
  gr.Slider(minimum=1, maximum=2048, value=0, step=1, label="Min Length"),
 
50
  gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
10
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
11
  tokenizer = AutoTokenizer.from_pretrained(model_name)
12
 
13
+ def correct_text(text, max_length, max_new_tokens=0, min_length, num_beams, temperature, top_p):
14
  inputs = tokenizer.encode(text, return_tensors="pt")
15
+ if max_new_tokens > 0:
16
+ outputs = model.generate(
17
+ inputs,
18
+ max_length=max_length,
19
+ max_new_tokens=max_new_tokens,
20
+ min_length=min_length,
21
+ num_beams=num_beams,
22
+ temperature=temperature,
23
+ top_p=top_p,
24
+ early_stopping=True
25
+ )
26
+ else:
27
+ outputs = model.generate(
28
+ inputs,
29
+ max_length=max_length,
30
+ min_length=min_length,
31
+ num_beams=num_beams,
32
+ temperature=temperature,
33
+ top_p=top_p,
34
+ early_stopping=True
35
+ )
36
  corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
37
  return corrected_text
38
 
39
 
40
+ def respond(message, history: list[tuple[str, str]], system_message, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
41
  #messages = [{"role": "system", "content": system_message}]
42
 
43
  #for val in history:
 
48
 
49
  #messages.append({"role": "user", "content": message})
50
 
51
+ response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
52
  yield response
53
 
54
  """
 
60
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
61
  gr.Slider(minimum=1, maximum=2048, value=100, step=1, label="Max Length"),
62
  gr.Slider(minimum=1, maximum=2048, value=0, step=1, label="Min Length"),
63
+ gr.Slider(minimum=1, maximum=2048, value=0, step=1, label="Max New Tokens (optional)"),
64
  gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"),
65
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
66
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),