File size: 7,189 Bytes
15639f6
 
 
2a6efbf
 
 
 
 
 
15639f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import spacy
from collections import Counter

try:
    nlp = spacy.load("ru_core_news_lg")
except OSError:
    import spacy.cli
    spacy.cli.download("ru_core_news_lg")
    nlp = spacy.load("ru_core_news_lg")

def analyze_text(text):
    doc = nlp(text)

    tokens = [token.text for token in doc]
    words = [token.text for token in doc if token.is_alpha]
    unique_words = set(words)
    stop_words = [token.text for token in doc if token.is_stop]
    avg_word_length = sum(len(word) for word in words) / len(words) if words else 0

    pos_counts = Counter([token.pos_ for token in doc if token.is_alpha])
    lemmas = [token.lemma_ for token in doc if token.is_alpha]
    unique_lemmas = set(lemmas)
    
    dependencies = Counter([token.dep_ for token in doc if token.dep_ != ""])
    
    has_noun_chunks = False
    try:
        next(doc.noun_chunks, None)
        has_noun_chunks = True
    except NotImplementedError:
        pass
    
    entities = [(ent.text, ent.label_) for ent in doc.ents]
    entity_counts = Counter([ent.label_ for ent in doc.ents])
    
    ttr = len(unique_words) / len(words) if words else 0
    
    def calculate_simplified_mtld(text_tokens, ttr_threshold=0.72):
        if len(text_tokens) < 10:
            return 0
        
        segments = []
        current_segment = []
        
        for token in text_tokens:
            current_segment.append(token)
            current_ttr = len(set(current_segment)) / len(current_segment)
            
            if current_ttr <= ttr_threshold and len(current_segment) >= 10:
                segments.append(current_segment)
                current_segment = []
        
        if current_segment:
            segments.append(current_segment)
            
        if not segments:
            return 0
        
        return len(text_tokens) / len(segments)
    
    mtld = calculate_simplified_mtld(words)
    
    sentences = list(doc.sents)
    sentence_lengths = [len(sent) for sent in sentences]
    avg_sentence_length = sum(sentence_lengths) / len(sentences) if sentences else 0
    
    words_per_sentence = len(words) / len(sentences) if sentences else 0
    
    def count_syllables_ru(word):
        return len([c for c in word.lower() if c in 'аеёиоуыэюя'])
    
    syllables = sum(count_syllables_ru(word) for word in words)
    syllables_per_word = syllables / len(words) if words else 0
    flesh_kincaid = 206.835 - 1.3 * words_per_sentence - 60.1 * syllables_per_word
    
    long_words = [word for word in words if count_syllables_ru(word) > 4]
    long_words_percent = len(long_words) / len(words) * 100 if words else 0
    
    sentence_count = len(sentences)
    question_count = sum(1 for sent in sentences if sent.text.strip().endswith('?'))
    exclamation_count = sum(1 for sent in sentences if sent.text.strip().endswith('!'))
    
    coherence_scores = []
    if len(sentences) > 1:
        for i in range(len(sentences)-1):
            if len(sentences[i]) > 0 and len(sentences[i+1]) > 0:
                try:
                    if sentences[i].vector_norm > 0 and sentences[i+1].vector_norm > 0:
                        sim = sentences[i].similarity(sentences[i+1])
                        coherence_scores.append(sim)
                except:
                    pass
    
    avg_coherence = sum(coherence_scores) / len(coherence_scores) if coherence_scores else 0
    
    analysis_results = {
        'basic_stats': {
            'total_tokens': len(tokens),
            'total_words': len(words),
            'unique_words': len(unique_words),
            'stop_words': len(stop_words),
            'avg_word_length': avg_word_length
        },
        'morphological_analysis': {
            'pos_distribution': {pos: count for pos, count in pos_counts.items()},
            'unique_lemmas': len(unique_lemmas),
            'lemma_word_ratio': len(unique_lemmas) / len(unique_words) if unique_words else 0
        },
        'syntactic_analysis': {
            'dependencies': {dep: count for dep, count in dependencies.most_common(10)},
            'noun_chunks': has_noun_chunks
        },
        'named_entities': {
            'total_entities': len(entities),
            'entity_types': {label: count for label, count in entity_counts.items()}
        },
        'lexical_diversity': {
            'ttr': ttr,
            'mtld': mtld
        },
        'text_structure': {
            'sentence_count': sentence_count,
            'avg_sentence_length': avg_sentence_length,
            'question_sentences': question_count,
            'exclamation_sentences': exclamation_count
        },
        'readability': {
            'words_per_sentence': words_per_sentence,
            'syllables_per_word': syllables_per_word,
            'flesh_kincaid_score': flesh_kincaid,
            'long_words_percent': long_words_percent
        },
        'semantic_coherence': {
            'avg_coherence_score': avg_coherence
        }
    }
    
    return analysis_results

def show_text_analysis(analysis):
    print("\n📊 TEXT ANALYSIS")
    
    print("\n=== BASIC STATISTICS ===")
    print(f"- Total tokens: {analysis['basic_stats']['total_tokens']}")
    print(f"- Total words: {analysis['basic_stats']['total_words']}")
    print(f"- Unique words: {analysis['basic_stats']['unique_words']}")
    print(f"- Stop words: {analysis['basic_stats']['stop_words']}")
    print(f"- Average word length: {analysis['basic_stats']['avg_word_length']:.2f} characters")
    
    print("\n=== MORPHOLOGICAL ANALYSIS ===")
    print("- POS distribution:")
    for pos, count in analysis['morphological_analysis']['pos_distribution'].items():
        print(f"  • {pos}: {count}")
    print(f"- Unique lemmas: {analysis['morphological_analysis']['unique_lemmas']}")
    
    print("\n=== SYNTACTIC ANALYSIS ===")
    print("- Syntactic dependencies (top-5):")
    for i, (dep, count) in enumerate(analysis['syntactic_analysis']['dependencies'].items()):
        if i >= 5:
            break
        print(f"  • {dep}: {count}")
    
    print("\n=== NAMED ENTITIES ===")
    print(f"- Total entities: {analysis['named_entities']['total_entities']}")
    
    print("\n=== LEXICAL DIVERSITY ===")
    print(f"- TTR (type-token ratio): {analysis['lexical_diversity']['ttr']:.3f}")
    print(f"- MTLD (simplified): {analysis['lexical_diversity']['mtld']:.2f}")
    
    print("\n=== TEXT STRUCTURE ===")
    print(f"- Sentence count: {analysis['text_structure']['sentence_count']}")
    print(f"- Average sentence length: {analysis['text_structure']['avg_sentence_length']:.2f} tokens")
    
    print("\n=== READABILITY ===")
    print(f"- Flesch-Kincaid score: {analysis['readability']['flesh_kincaid_score']:.2f}")
    print(f"- Long words percentage: {analysis['readability']['long_words_percent']:.2f}%")
    
    print(f"\n=== SEMANTIC COHERENCE ===")
    print(f"- Average coherence between sentences: {analysis['semantic_coherence']['avg_coherence_score']:.3f}")