File size: 36,419 Bytes
20e51d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import classification_report, accuracy_score, roc_auc_score, precision_recall_fscore_support, confusion_matrix
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.impute import SimpleImputer
import matplotlib.pyplot as plt
import json
import joblib
import os
import seaborn as sns
from scipy import stats
import time
import argparse

def setup_gpu():
    if torch.cuda.is_available():
        return True
    else:
        print("No GPUs found. Using CPU.")
        return False

GPU_AVAILABLE = setup_gpu()
DEVICE = torch.device('cuda' if GPU_AVAILABLE else 'cpu')

def load_data_from_json(directory_path):
    if os.path.isfile(directory_path):
        directory = os.path.dirname(directory_path)
    else:
        directory = directory_path
        
    print(f"Loading JSON files from directory: {directory}")
    
    json_files = [os.path.join(directory, f) for f in os.listdir(directory) 
                if f.endswith('.json') and os.path.isfile(os.path.join(directory, f))]
    
    if not json_files:
        raise ValueError(f"No JSON files found in directory {directory}")
    
    print(f"Found {len(json_files)} JSON files")
    
    all_data = []
    for file_path in json_files:
        try:
            with open(file_path, 'r', encoding='utf-8') as f:
                data_dict = json.load(f)
            if 'data' in data_dict:
                all_data.extend(data_dict['data'])
            else:
                print(f"Warning: 'data' key not found in {os.path.basename(file_path)}")
        except Exception as e:
            print(f"Error loading {os.path.basename(file_path)}: {str(e)}")
    
    if not all_data:
        raise ValueError("Failed to load data from JSON files")
        
    df = pd.DataFrame(all_data)
    
    label_mapping = {
        'ai': 'AI',
        'human': 'Human',
        'ai+rew': 'AI',
    }
    
    if 'source' in df.columns:
        df['label'] = df['source'].map(lambda x: label_mapping.get(x, x))
    else:
        print("Warning: 'source' column not found, using default label")
        df['label'] = 'Unknown'
    
    valid_labels = ['AI', 'Human']
    df = df[df['label'].isin(valid_labels)]
    
    print(f"Filtered to {len(df)} examples with labels: {valid_labels}")
    print(f"Label distribution: {df['label'].value_counts().to_dict()}")
    
    return df

class Medium_Binary_Network(nn.Module):
    def __init__(self, input_size, hidden_sizes=[256, 128, 64, 32], dropout=0.3):
        super(Medium_Binary_Network, self).__init__()
        
        layers = []
        prev_size = input_size
        
        for hidden_size in hidden_sizes:
            layers.append(nn.Linear(prev_size, hidden_size))
            layers.append(nn.ReLU())
            layers.append(nn.Dropout(dropout))
            prev_size = hidden_size
            
        layers.append(nn.Linear(prev_size, 2))
        
        self.model = nn.Sequential(*layers)
        
    def forward(self, x):
        return self.model(x)

def cross_validate_simple_classifier(directory_path="experiments/results/two_scores_with_long_text_analyze_2048T", 

                                   feature_config=None,

                                   n_splits=5,

                                   random_state=42,

                                   epochs=100,

                                   hidden_sizes=[256, 128, 64, 32],

                                   dropout=0.3,

                                   early_stopping_patience=10):
    print("\n" + "="*50)
    print("MEDIUM BINARY CLASSIFIER CROSS-VALIDATION")
    print("="*50)
    
    if feature_config is None:
        feature_config = {
            'basic_scores': True, 
            'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
            'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
            'syntactic': ['dependencies', 'noun_chunks'],
            'entities': ['total_entities', 'entity_types'],
            'diversity': ['ttr', 'mtld'],
            'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
            'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
            'semantic': True
        }
    
    df = load_data_from_json(directory_path)
    
    features_df = select_features(df, feature_config)
    print(f"Selected {len(features_df.columns)} features")
    
    imputer = SimpleImputer(strategy='mean')
    X = imputer.fit_transform(features_df)
    
    label_encoder = LabelEncoder()
    y = label_encoder.fit_transform(df['label'].values)
    
    skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=random_state)
    
    fold_metrics = []
    fold_models = []
    
    all_train_losses = []
    all_val_losses = []
    all_train_accs = []
    all_val_accs = []
    
    all_y_true = []
    all_y_pred = []
    
    best_fold_score = -1
    best_fold_index = -1
    
    for fold, (train_idx, test_idx) in enumerate(skf.split(X, y)):
        print(f"\n{'='*20} Fold {fold+1}/{n_splits} {'='*20}")
        
        X_train, X_test = X[train_idx], X[test_idx]
        y_train, y_test = y[train_idx], y[test_idx]
        
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train)
        X_test_scaled = scaler.transform(X_test)
        
        X_train_tensor = torch.FloatTensor(X_train_scaled).to(DEVICE)
        y_train_tensor = torch.LongTensor(y_train).to(DEVICE)
        X_test_tensor = torch.FloatTensor(X_test_scaled).to(DEVICE)
        y_test_tensor = torch.LongTensor(y_test).to(DEVICE)
        
        train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
        train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
        
        model = Medium_Binary_Network(X_train_scaled.shape[1], hidden_sizes=hidden_sizes, dropout=dropout).to(DEVICE)
        print(f"Model created with {len(hidden_sizes)} hidden layers: {hidden_sizes}")
        
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True)
        
        best_val_loss = float('inf')
        patience_counter = 0
        best_model_state = None
        
        train_losses = []
        val_losses = []
        train_accs = []
        val_accs = []
        
        for epoch in range(epochs):
            model.train()
            running_loss = 0.0
            running_corrects = 0
            
            for inputs, labels in train_loader:
                optimizer.zero_grad()
                outputs = model(inputs)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()
                
                _, preds = torch.max(outputs, 1)
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels).item()
            
            epoch_loss = running_loss / len(train_loader.dataset)
            epoch_acc = running_corrects / len(train_loader.dataset)
            train_losses.append(epoch_loss)
            train_accs.append(epoch_acc)
            
            model.eval()
            with torch.no_grad():
                val_outputs = model(X_test_tensor)
                val_loss = criterion(val_outputs, y_test_tensor)
                val_losses.append(val_loss.item())
                
                _, val_preds = torch.max(val_outputs, 1)
                val_acc = torch.sum(val_preds == y_test_tensor).item() / len(y_test_tensor)
                val_accs.append(val_acc)
                
                if val_loss < best_val_loss:
                    best_val_loss = val_loss
                    patience_counter = 0
                    best_model_state = model.state_dict().copy()
                else:
                    patience_counter += 1
                
                if patience_counter >= early_stopping_patience:
                    print(f"Early stopping at epoch {epoch+1}")
                    break
            
            scheduler.step(val_loss)
            
            if (epoch + 1) % 10 == 0 or epoch == 0:
                print(f"Epoch {epoch+1}/{epochs}, Train Loss: {epoch_loss:.4f}, Train Acc: {epoch_acc:.4f}, Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.4f}")
        
        if best_model_state:
            model.load_state_dict(best_model_state)
            print("Loaded best model weights")
        
        model.eval()
        with torch.no_grad():
            test_outputs = model(X_test_tensor)
            _, predicted = torch.max(test_outputs, 1)
            test_acc = torch.sum(predicted == y_test_tensor).item() / len(y_test_tensor)
            
            y_test_np = y_test
            predicted_np = predicted.cpu().numpy()
            
            all_y_true.extend(y_test_np)
            all_y_pred.extend(predicted_np)
            
            precision, recall, f1, _ = precision_recall_fscore_support(y_test_np, predicted_np, average='weighted')
            
            fold_metric = {
                'fold': fold + 1,
                'accuracy': float(test_acc),
                'precision': float(precision),
                'recall': float(recall),
                'f1': float(f1),
                'val_loss': float(best_val_loss)
            }
            
            fold_metrics.append(fold_metric)
            
            fold_models.append({
                'model': model,
                'scaler': scaler,
                'label_encoder': label_encoder,
                'imputer': imputer,
                'score': test_acc
            })
            
            if test_acc > best_fold_score:
                best_fold_score = test_acc
                best_fold_index = fold
            
            all_train_losses.extend(train_losses)
            all_val_losses.extend(val_losses)
            all_train_accs.extend(train_accs)
            all_val_accs.extend(val_accs)
            
            print(f"Fold {fold+1} Results:")
            print(f"  Accuracy: {test_acc:.4f}")
            print(f"  Precision: {precision:.4f}")
            print(f"  Recall: {recall:.4f}")
            print(f"  F1 Score: {f1:.4f}")
    
    overall_accuracy = accuracy_score(all_y_true, all_y_pred)
    overall_precision, overall_recall, overall_f1, _ = precision_recall_fscore_support(
        all_y_true, all_y_pred, average='weighted'
    )
    
    fold_accuracies = [metrics['accuracy'] for metrics in fold_metrics]
    mean_accuracy = np.mean(fold_accuracies)
    std_accuracy = np.std(fold_accuracies)
    
    ci_lower = mean_accuracy - 1.96 * std_accuracy / np.sqrt(n_splits)
    ci_upper = mean_accuracy + 1.96 * std_accuracy / np.sqrt(n_splits)
    
    plot_learning_curve(all_train_losses, all_val_losses)
    plot_accuracy_curve(all_train_accs, all_val_accs)
    
    class_names = label_encoder.classes_
    cm = confusion_matrix(all_y_true, all_y_pred)
    plt.figure(figsize=(10, 8))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 
                xticklabels=class_names, 
                yticklabels=class_names)
    plt.title('Binary Classification Confusion Matrix (Cross-Validation)')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')    
    os.makedirs('plots/binary', exist_ok=True)
    plt.savefig('plots/binary/confusion_matrix_medium.png')
    plt.close()
    
    print("\n" + "="*50)
    print("CROSS-VALIDATION SUMMARY")
    print("="*50)
    print(f"Mean Accuracy: {mean_accuracy:.4f} ± {std_accuracy:.4f}")
    print(f"95% Confidence Interval: [{ci_lower:.4f}, {ci_upper:.4f}]")
    print(f"Overall Accuracy: {overall_accuracy:.4f}")
    print(f"Overall Precision: {overall_precision:.4f}")
    print(f"Overall Recall: {overall_recall:.4f}")
    print(f"Overall F1: {overall_f1:.4f}")
    
    print(f"\nBest Fold: {best_fold_index + 1} (Accuracy: {fold_metrics[best_fold_index]['accuracy']:.4f})")
    
    best_model_data = fold_models[best_fold_index]
    
    results = {
        'fold_metrics': fold_metrics,
        'overall': {
            'accuracy': float(overall_accuracy),
            'precision': float(overall_precision),
            'recall': float(overall_recall),
            'f1': float(overall_f1)
        },
        'cross_validation': {
            'mean_accuracy': float(mean_accuracy),
            'std_accuracy': float(std_accuracy),
            'confidence_interval_95': [float(ci_lower), float(ci_upper)]
        },
        'best_fold': {
            'fold': best_fold_index + 1,
            'accuracy': float(fold_metrics[best_fold_index]['accuracy'])
        },
        'model_config': {
            'hidden_sizes': hidden_sizes,
            'dropout': dropout
        }
    }
    
    output_dir = 'models/medium_binary_classifier'
    save_paths = save_binary_model(best_model_data, results, output_dir=output_dir)
    
    return best_model_data, results, save_paths

def plot_learning_curve(train_losses, val_losses):
    plt.figure(figsize=(10, 6))
    epochs = range(1, len(train_losses) + 1)
    
    plt.plot(epochs, train_losses, 'b-', label='Training Loss')
    plt.plot(epochs, val_losses, 'r-', label='Validation Loss')
    
    plt.title('Learning Curve')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()
    plt.grid(True)
    
    os.makedirs('plots/binary', exist_ok=True)
    plt.savefig('plots/binary/learning_curve.png')
    plt.close()
    print("Learning curve saved to plots/binary/learning_curve.png")

def plot_accuracy_curve(train_accuracies, val_accuracies):
    plt.figure(figsize=(10, 6))
    epochs = range(1, len(train_accuracies) + 1)
    
    plt.plot(epochs, train_accuracies, 'g-', label='Training Accuracy')
    plt.plot(epochs, val_accuracies, 'm-', label='Validation Accuracy')
    
    plt.title('Accuracy Curve')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.grid(True)
    
    plt.ylim(0, 1.0)
    
    os.makedirs('plots/binary', exist_ok=True)
    plt.savefig('plots/binary/accuracy_curve.png')
    plt.close()
    print("Accuracy curve saved to plots/binary/accuracy_curve.png")

def select_features(df, feature_config):
    features_df = pd.DataFrame()
    
    if feature_config.get('basic_scores', True):
        if 'score_chat' in df.columns:
            features_df['score_chat'] = df['score_chat']
        if 'score_coder' in df.columns:
            features_df['score_coder'] = df['score_coder']
    
    if 'text_analysis' in df.columns:
        if feature_config.get('basic_text_stats'):
            for feature in feature_config['basic_text_stats']:
                features_df[f'basic_{feature}'] = df['text_analysis'].apply(
                    lambda x: x.get('basic_stats', {}).get(feature, 0) if isinstance(x, dict) else 0
                )
        
        if feature_config.get('morphological'):
            for feature in feature_config['morphological']:
                if feature == 'pos_distribution':
                    pos_types = ['NOUN', 'VERB', 'ADJ', 'ADV', 'PROPN', 'DET', 'ADP', 'PRON', 'CCONJ', 'SCONJ']
                    for pos in pos_types:
                        features_df[f'pos_{pos}'] = df['text_analysis'].apply(
                            lambda x: x.get('morphological_analysis', {}).get('pos_distribution', {}).get(pos, 0) 
                            if isinstance(x, dict) else 0
                        )
                else:
                    features_df[f'morph_{feature}'] = df['text_analysis'].apply(
                        lambda x: x.get('morphological_analysis', {}).get(feature, 0) if isinstance(x, dict) else 0
                    )
        
        if feature_config.get('syntactic'):
            for feature in feature_config['syntactic']:
                if feature == 'dependencies':
                    dep_types = ['nsubj', 'obj', 'amod', 'nmod', 'ROOT', 'punct', 'case']
                    for dep in dep_types:
                        features_df[f'dep_{dep}'] = df['text_analysis'].apply(
                            lambda x: x.get('syntactic_analysis', {}).get('dependencies', {}).get(dep, 0) 
                            if isinstance(x, dict) else 0
                        )
                else:
                    features_df[f'synt_{feature}'] = df['text_analysis'].apply(
                        lambda x: x.get('syntactic_analysis', {}).get(feature, 0) if isinstance(x, dict) else 0
                    )
        
        if feature_config.get('entities'):
            for feature in feature_config['entities']:
                if feature == 'entity_types':
                    entity_types = ['PER', 'LOC', 'ORG']
                    for ent in entity_types:
                        features_df[f'ent_{ent}'] = df['text_analysis'].apply(
                            lambda x: x.get('named_entities', {}).get('entity_types', {}).get(ent, 0) 
                            if isinstance(x, dict) else 0
                        )
                else:
                    features_df[f'ent_{feature}'] = df['text_analysis'].apply(
                        lambda x: x.get('named_entities', {}).get(feature, 0) if isinstance(x, dict) else 0
                    )
        
        if feature_config.get('diversity'):
            for feature in feature_config['diversity']:
                features_df[f'div_{feature}'] = df['text_analysis'].apply(
                    lambda x: x.get('lexical_diversity', {}).get(feature, 0) if isinstance(x, dict) else 0
                )
        
        if feature_config.get('structure'):
            for feature in feature_config['structure']:
                features_df[f'struct_{feature}'] = df['text_analysis'].apply(
                    lambda x: x.get('text_structure', {}).get(feature, 0) if isinstance(x, dict) else 0
                )
        
        if feature_config.get('readability'):
            for feature in feature_config['readability']:
                features_df[f'read_{feature}'] = df['text_analysis'].apply(
                    lambda x: x.get('readability', {}).get(feature, 0) if isinstance(x, dict) else 0
                )
        
        if feature_config.get('semantic'):
            features_df['semantic_coherence'] = df['text_analysis'].apply(
                lambda x: x.get('semantic_coherence', {}).get('avg_coherence_score', 0) if isinstance(x, dict) else 0
            )
    
    print(f"Generated {len(features_df.columns)} features")
    return features_df

def augment_text_features(features_df, num_augmentations=5, noise_factor=0.05):
    augmented_dfs = [features_df]
    
    for i in range(num_augmentations):
        numeric_cols = features_df.select_dtypes(include=[np.number]).columns
        augmented_df = features_df.copy()
        for col in numeric_cols:
            augmented_df[col] = augmented_df[col].astype(float)
        
        noise = augmented_df[numeric_cols] * np.random.normal(0, noise_factor, size=augmented_df[numeric_cols].shape)
        augmented_df[numeric_cols] += noise
        augmented_dfs.append(augmented_df)
    
    return pd.concat(augmented_dfs, ignore_index=True)

def cross_validate_binary_classifier(directory_path="experiments/results/two_scores_with_long_text_analyze_2048T", 

                                    model_config=None, 

                                    feature_config=None,

                                    n_splits=5,

                                    random_state=42,

                                    epochs=100,

                                    early_stopping_patience=10,

                                    use_augmentation=True,

                                    num_augmentations=2,

                                    noise_factor=0.05):
    if model_config is None:
        model_config = {
            'hidden_layers': [256, 128, 64],
            'dropout_rate': 0.3
        }
    
    if feature_config is None:
        feature_config = {
            'basic_scores': True, 
            'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
            'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
            'syntactic': ['dependencies', 'noun_chunks'],
            'entities': ['total_entities', 'entity_types'],
            'diversity': ['ttr', 'mtld'],
            'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
            'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
            'semantic': True
        }
    
    print("\n" + "="*50)
    print("BINARY CLASSIFIER CROSS-VALIDATION")
    print("="*50)
    
    df = load_data_from_json(directory_path)
    
    features_df = select_features(df, feature_config)
    print(f"Selected features: {features_df.columns.tolist()}")
    
    imputer = SimpleImputer(strategy='mean')
    
    if use_augmentation:
        print(f"Augmenting data with {num_augmentations} copies (noise factor: {noise_factor})...")
        original_size = len(features_df)
        features_df_augmented = augment_text_features(features_df, 
                                                    num_augmentations=num_augmentations, 
                                                    noise_factor=noise_factor)
        y_augmented = np.tile(df['label'].values, num_augmentations + 1)
        print(f"Data size increased from {original_size} to {len(features_df_augmented)}")
        
        X = imputer.fit_transform(features_df_augmented)
        y = y_augmented
    else:
        X = imputer.fit_transform(features_df)
        y = df['label'].values
    
    label_encoder = LabelEncoder()
    y_encoded = label_encoder.fit_transform(y)
    
    print(f"Data size: {X.shape}")
    print(f"Labels distribution: {pd.Series(y).value_counts().to_dict()}")
    
    skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=random_state)
    
    fold_metrics = []
    fold_models = []
    all_y_true = []
    all_y_pred = []
    all_y_scores = []
    
    best_fold_score = -1
    best_fold_index = -1
    
    print(f"\nPerforming {n_splits}-fold cross-validation...")
    
    num_avg_epochs = 5
    saved_weights = []
    
    for fold, (train_idx, test_idx) in enumerate(skf.split(X, y_encoded)):
        print(f"\n{'='*20} Fold {fold+1}/{n_splits} {'='*20}")
        
        X_train, X_test = X[train_idx], X[test_idx]
        y_train, y_test = y_encoded[train_idx], y_encoded[test_idx]
        
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train)
        X_test_scaled = scaler.transform(X_test)
        
        X_train_tensor = torch.FloatTensor(X_train_scaled).to(DEVICE)
        y_train_tensor = torch.LongTensor(y_train).to(DEVICE)
        X_test_tensor = torch.FloatTensor(X_test_scaled).to(DEVICE)
        y_test_tensor = torch.LongTensor(y_test).to(DEVICE)
        
        train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
        train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
        
        num_classes = len(label_encoder.classes_)
        model = build_neural_network(X_train_scaled.shape[1], num_classes, 
                                     hidden_layers=model_config['hidden_layers'])
        
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
        scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
        
        best_val_loss = float('inf')
        patience_counter = 0
        best_model_state = None
        
        train_losses = []
        val_losses = []
        
        saved_weights = []
        
        for epoch in range(epochs):
            model.train()
            running_loss = 0.0
            
            for inputs, labels in train_loader:
                optimizer.zero_grad()
                outputs = model(inputs)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()
                
                running_loss += loss.item() * inputs.size(0)
            
            epoch_loss = running_loss / len(train_loader.dataset)
            train_losses.append(epoch_loss)
            
            model.eval()
            with torch.no_grad():
                val_outputs = model(X_test_tensor)
                val_loss = criterion(val_outputs, y_test_tensor)
                val_losses.append(val_loss.item())
                
                if val_loss < best_val_loss:
                    best_val_loss = val_loss
                    patience_counter = 0
                    best_model_state = model.state_dict().copy()
                else:
                    patience_counter += 1
                
                if patience_counter >= early_stopping_patience:
                    print(f"Early stopping at epoch {epoch+1}")
                    break
            
            if epoch >= epochs - num_avg_epochs:
                saved_weights.append(model.state_dict().copy())
            
            scheduler.step()
            
            if (epoch + 1) % 10 == 0 or epoch == 0:
                print(f"Epoch {epoch+1}/{epochs}, Train Loss: {epoch_loss:.4f}, Val Loss: {val_loss:.4f}")
        
        if len(saved_weights) > 0:
            print(f"Averaging weights from last {len(saved_weights)} epochs...")
            avg_state_dict = saved_weights[0].copy()
            for key in avg_state_dict.keys():
                if epoch >= epochs - num_avg_epochs:
                    for i in range(1, len(saved_weights)):
                        avg_state_dict[key] += saved_weights[i][key]
                    avg_state_dict[key] /= len(saved_weights)
            
            model.load_state_dict(avg_state_dict)
            print("Model loaded with averaged weights")
        elif best_model_state:
            model.load_state_dict(best_model_state)
            print("Model loaded with best validation weights")
        
        model.eval()
        with torch.no_grad():
            test_outputs = model(X_test_tensor)
            _, predicted = torch.max(test_outputs.data, 1)
            predicted_np = predicted.cpu().numpy()
            
            probabilities = torch.softmax(test_outputs, dim=1)
            pos_scores = probabilities[:, 1].cpu().numpy()
            
            all_y_true.extend(y_test)
            all_y_pred.extend(predicted_np)
            all_y_scores.extend(pos_scores)
        
        fold_acc = accuracy_score(y_test, predicted_np)
        precision, recall, f1, _ = precision_recall_fscore_support(y_test, predicted_np, average='weighted')
        
        try:
            fold_auc = roc_auc_score(y_test, pos_scores)
        except:
            fold_auc = 0.0
            print("Warning: Could not compute AUC")
        
        fold_metrics.append({
            'fold': fold + 1,
            'accuracy': float(fold_acc),
            'precision': float(precision),
            'recall': float(recall),
            'f1': float(f1),
            'auc': float(fold_auc),
            'best_val_loss': float(best_val_loss)
        })
        
        fold_models.append({
            'model': model,
            'scaler': scaler,
            'label_encoder': label_encoder,
            'imputer': imputer,
            'score': fold_acc
        })
        
        if fold_acc > best_fold_score:
            best_fold_score = fold_acc
            best_fold_index = fold
            
        print(f"Fold {fold+1} Results:")
        print(f"  Accuracy: {fold_acc:.4f}")
        print(f"  Precision: {precision:.4f}")
        print(f"  Recall: {recall:.4f}")
        print(f"  F1 Score: {f1:.4f}")
        if fold_auc > 0:
            print(f"  AUC: {fold_auc:.4f}")
    
    overall_accuracy = accuracy_score(all_y_true, all_y_pred)
    overall_precision, overall_recall, overall_f1, _ = precision_recall_fscore_support(
        all_y_true, all_y_pred, average='weighted'
    )
    
    try:
        overall_auc = roc_auc_score(all_y_true, all_y_scores)
    except:
        overall_auc = 0.0
        print("Warning: Could not compute overall AUC")
    
    fold_accuracies = [metrics['accuracy'] for metrics in fold_metrics]
    mean_accuracy = np.mean(fold_accuracies)
    std_accuracy = np.std(fold_accuracies)
    
    ci_lower = mean_accuracy - 1.96 * std_accuracy / np.sqrt(n_splits)
    ci_upper = mean_accuracy + 1.96 * std_accuracy / np.sqrt(n_splits)
    
    class_counts = np.bincount(y_encoded)
    baseline_accuracy = np.max(class_counts) / len(y_encoded)
    most_frequent_class = np.argmax(class_counts)
    
    t_stat, p_value = stats.ttest_1samp(fold_accuracies, baseline_accuracy)
    
    best_model_data = fold_models[best_fold_index]
    
    class_names = label_encoder.classes_
    cm = confusion_matrix(all_y_true, all_y_pred)
    plt.figure(figsize=(10, 8))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 
                xticklabels=class_names, 
                yticklabels=class_names)
    plt.title('Binary Classification Confusion Matrix (Cross-Validation)')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    os.makedirs('plots/binary', exist_ok=True)
    plt.savefig('plots/binary/confusion_matrix_cv.png')
    plt.close()
    
    if overall_auc > 0:
        from sklearn.metrics import roc_curve
        fpr, tpr, _ = roc_curve(all_y_true, all_y_scores)
        plt.figure(figsize=(10, 8))
        plt.plot(fpr, tpr, lw=2, label=f'ROC curve (AUC = {overall_auc:.4f})')
        plt.plot([0, 1], [0, 1], 'k--', lw=2)
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.05])
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.title('Receiver Operating Characteristic (ROC)')
        plt.legend(loc="lower right")
        plt.savefig('plots/binary/roc_curve.png')
        plt.close()
    
    results = {
        'fold_metrics': fold_metrics,
        'overall': {
            'accuracy': float(overall_accuracy),
            'precision': float(overall_precision),
            'recall': float(overall_recall),
            'f1': float(overall_f1),
            'auc': float(overall_auc) if overall_auc > 0 else None
        },
        'cross_validation': {
            'mean_accuracy': float(mean_accuracy),
            'std_accuracy': float(std_accuracy),
            'confidence_interval_95': [float(ci_lower), float(ci_upper)],
            'baseline_accuracy': float(baseline_accuracy),
            'most_frequent_class': str(label_encoder.inverse_transform([most_frequent_class])[0]),
            't_statistic': float(t_stat),
            'p_value': float(p_value),
            'statistically_significant': "yes" if p_value < 0.05 else "no"
        },
        'best_fold': {
            'fold': best_fold_index + 1,
            'accuracy': float(fold_metrics[best_fold_index]['accuracy'])
        }
    }
    
    print("\n" + "="*50)
    print("CROSS-VALIDATION SUMMARY")
    print("="*50)
    print(f"Mean Accuracy: {mean_accuracy:.4f} ± {std_accuracy:.4f}")
    print(f"95% Confidence Interval: [{ci_lower:.4f}, {ci_upper:.4f}]")
    print(f"Overall Accuracy: {overall_accuracy:.4f}")
    print(f"Baseline Accuracy: {baseline_accuracy:.4f} (most frequent class: {label_encoder.inverse_transform([most_frequent_class])[0]})")
    print(f"T-statistic: {t_stat:.4f}, p-value: {p_value:.6f}")
    
    if p_value < 0.05:
        print("The model is significantly better than the baseline (p < 0.05)")
    else:
        print("The model is NOT significantly better than the baseline (p >= 0.05)")
    
    print(f"\nBest Fold: {best_fold_index + 1} (Accuracy: {fold_metrics[best_fold_index]['accuracy']:.4f})")
    
    return best_model_data, results

def save_binary_model(model_data, results, output_dir='models/binary_classifier'):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    model_path = os.path.join(output_dir, 'nn_model.pt')
    torch.save(model_data['model'].state_dict(), model_path)
    
    scaler_path = os.path.join(output_dir, 'scaler.joblib')
    joblib.dump(model_data['scaler'], scaler_path)
    
    encoder_path = os.path.join(output_dir, 'label_encoder.joblib')
    joblib.dump(model_data['label_encoder'], encoder_path)
    
    imputer_path = os.path.join(output_dir, 'imputer.joblib')
    joblib.dump(model_data['imputer'], imputer_path)
    
    results_path = os.path.join(output_dir, 'cv_results.json')
    with open(results_path, 'w') as f:
        json.dump(results, f, indent=4)
    
    print(f"Binary model saved to {model_path}")
    print(f"CV results saved to {results_path}")
    
    return {
        'model_path': model_path,
        'scaler_path': scaler_path,
        'encoder_path': encoder_path,
        'imputer_path': imputer_path,
        'results_path': results_path
    }

def parse_args():
    parser = argparse.ArgumentParser(description='Binary Neural Network Classifier (Human vs AI) with Cross-Validation')
    parser.add_argument('--random_seed', type=int, default=42, 
                        help='Random seed for reproducibility')
    parser.add_argument('--folds', type=int, default=5,
                        help='Number of cross-validation folds')
    parser.add_argument('--epochs', type=int, default=100,
                        help='Maximum number of training epochs per fold')
    parser.add_argument('--patience', type=int, default=10,
                        help='Early stopping patience (epochs)')
    return parser.parse_args()

def main():
    print("\n" + "="*50)
    print("MEDIUM BINARY CLASSIFIER")
    print("="*50 + "\n")
    
    args = parse_args()
    
    seed = args.random_seed
    np.random.seed(seed)
    torch.manual_seed(seed)
    if GPU_AVAILABLE:
        torch.cuda.manual_seed_all(seed)
    
    plt.switch_backend('agg')
    
    feature_config = {
        'basic_scores': True,
        'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
        'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
        'syntactic': ['dependencies', 'noun_chunks'],
        'entities': ['total_entities', 'entity_types'],
        'diversity': ['ttr', 'mtld'],
        'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
        'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
        'semantic': True
    }
    
    model_data, results, save_paths = cross_validate_simple_classifier(
        directory_path="experiments/results/two_scores_with_long_text_analyze_2048T",
        feature_config=feature_config,
        n_splits=5,
        random_state=seed,
        epochs=150,
        hidden_sizes=[256, 192, 128, 64],
        dropout=0.3,
        early_stopping_patience=15
    )
    
    print("\nTraining completed.")
    print(f"Medium binary classifier saved to {save_paths['model_path']}")

if __name__ == "__main__":
    main()