File size: 1,379 Bytes
633d9b3
 
 
 
 
 
 
 
 
 
 
81d4a71
 
 
 
 
 
633d9b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
from dotenv import load_dotenv
import torch
# from huggingface_hub import login
from transformers import AutoTokenizer, AutoModel

load_dotenv()

huggingface_token = os.environ.get("HF_TOKEN", "")

# login(huggingface_token)
# Model is private?
# auto_tokenizer = AutoTokenizer.from_pretrained(
#     "CocoonBusiness/VectorSearch", token=huggingface_token, low_cpu_mem_usage=True
# )

auto_tokenizer = AutoTokenizer.from_pretrained("xValentim/vector-search-bert-based", low_cpu_mem_usage=True)

model = AutoModel.from_pretrained(
    "jegorkitskerkin/robbert-v2-dutch-base-mqa-finetuned", low_cpu_mem_usage=True
)


def get_embeddings(text_list):
    encoded_input = auto_tokenizer(
        text_list,
        padding=True,
        truncation=True,
        max_length=500,
        return_tensors="pt",
        add_special_tokens=True,
    )
    model_output = model(**encoded_input)
    embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
    # Make 1D vector
    return embeddings.detach().numpy().flatten().tolist()


def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = (
        attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    )
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
        input_mask_expanded.sum(1), min=1e-9
    )