Spaces:
Sleeping
Sleeping
File size: 1,242 Bytes
c42cd15 ca22ad0 c42cd15 ca22ad0 c42cd15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import torch
from PIL import Image
from torchvision import transforms
from architecture import ResNetLungCancer
import gradio as gr
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = ResNetLungCancer(num_classes=4)
model.load_state_dict(torch.load('Model/lung_cancer_detection_model.pth', map_location=device))
model = model.to(device)
model.eval()
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
class_names = ['Adenocarcinoma', 'Large Cell Carcinoma', 'Normal', 'Squamous Cell Carcinoma']
def predict(image):
image = Image.fromarray(image.astype('uint8'), 'RGB')
input_tensor = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
output = model(input_tensor)
predicted_class = torch.argmax(output, dim=1).item()
return class_names[predicted_class]
iface = gr.Interface(
fn=predict,
inputs=gr.Image(),
outputs=gr.Label(num_top_classes=1),
examples=[
["Data/test/large.cell.carcinoma/000108.png"],
["Data/test/normal/7 - Copy (3).png"]
]
)
iface.launch(share=True) |