File size: 13,231 Bytes
2a3f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd35e2
2a3f220
9fd35e2
 
2a3f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd35e2
 
 
 
2a3f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e0eb6
 
 
2a3f220
e1e090f
9420452
86e0eb6
2a3f220
 
 
 
 
 
 
 
9fd35e2
2a3f220
 
 
 
 
9fd35e2
 
2a3f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3cfcb
2a3f220
 
 
 
9c3cfcb
2a3f220
 
 
 
 
 
 
 
9fd35e2
 
 
2a3f220
9fd35e2
2a3f220
9fd35e2
 
 
 
 
 
 
 
 
 
 
 
 
 
2a3f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd35e2
 
 
2a3f220
 
9fd35e2
f81587e
9fd35e2
 
 
 
 
 
 
 
 
f81587e
 
9fd35e2
f81587e
2a3f220
 
 
 
 
 
 
 
 
 
 
9fd35e2
2a3f220
 
 
 
 
 
 
 
 
 
 
 
 
9fd35e2
 
c225cb1
2a3f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import streamlit as st
#from openai import OpenAI
from together import Together
from datetime import datetime
import time

st.set_page_config(
    page_title="Chat with me!",
    page_icon="🌎",
    initial_sidebar_state="expanded",
    layout="wide"
)
st.markdown(
    """ <style>
            div[role="radiogroup"] >  :first-child{
                display: none !important;
            }
        </style>
        """,
    unsafe_allow_html=True
)

### Setting up the session state 
def generate_tokens(response):
    for token in response:
        if hasattr(token, 'choices') and token.choices:
            content = token.choices[0].delta.content
            if content:   
                yield content

def format_personalization(text):
    try:
        for key, value in st.session_state.items():
            text = text.replace(f"[{key.upper()}]", str(value))

    except Exception as e:
        print(text)
        f"Failed to format personalization: {e}"
    return text
    
if 'inserted' not in st.session_state:
    ### read in txts
    with open('base.txt', 'r') as file:
        st.session_state.base_text = file.read()
    with open('knowledge.txt', 'r') as file:
        st.session_state.knowledge_text = file.read()
    with open('personalization.txt', 'r') as file:
        st.session_state.personalization_text = file.read()

    # web app state
    st.session_state.gotit = False
    st.session_state.inserted = 0
    st.session_state.submitted = False
    st.session_state["model"] = "deepseek-ai/DeepSeek-V3"
    st.session_state.max_messages = 50
    st.session_state.messages = []

    # user info state
    st.session_state.fields = [
    'climate_actions', 'age', 'gender', 'education', 'residence', 'property', 
    'politics', 'impact_open', 'ev', 
    'fossil', 'aerosol', 'diet', 'recycling',
    'user_id'
    ]

    for field in st.session_state.fields:
        st.session_state[field] = ''

    st.session_state.recycling = 0

    # timers
    st.session_state.start_time = datetime.now()
    st.session_state.convo_start_time = ''

if 'p' not in st.query_params:
    st.query_params['p'] = 't'

def setup_messages():
    # t = personalization 
    # k = knowledge
    # f = formatting
    # n = no chat

    if st.query_params["p"] == "f" or st.query_params["p"] == "n":
        st.session_state.system_message = st.session_state.base_text 
    elif st.query_params["p"] == "k":
        st.session_state.system_message = st.session_state.knowledge_text
    elif st.query_params["p"] == "t":
        st.session_state.system_message = format_personalization(st.session_state.personalization_text)

    st.session_state.messages = [{ "role": "system", "content": st.session_state.system_message}]
    st.session_state.convo_start_time = datetime.now()

client = Together(api_key=st.secrets["TOGETHER_API_KEY"])

### App interface 
with st.sidebar:
    st.markdown("# Let's talk climate action!")
    st.markdown(f"""
    {"β˜‘" if st.session_state.submitted else "☐"} **Step 1. Complete a form.**

    {"β˜‘" if len(st.session_state.messages) > 0 else "☐"} **Step 2. Type in the chat box to start a conversation.**

    You should ask a climate change related question like:
    - *What are the most effective actions to reduce my carbon emissions?*
    - *What's better for the environment: a year of vegetarianism or skipping one transatlantic flight?*
    - *How do the emissions saved by switching to an EV compare to recycling for a year in terms of trees planted?*

    If you're unsure about a metric or number, simply ask the chatbot for an explanation.

    You must respond **at least 5 times** before you can submit the conversation. An *End Conversation* button will appear then. You are free to continue the conversation further before you submit it.

    {"β˜‘" if st.session_state.inserted > 0 else "☐"} **Step 3. Use the *End Conversation* button to  submit your response.** 

    You have to submit your conversation to receive compensation.
    
    {"πŸŽ‰ **All done! Please press *Next* in the survey.**" if st.session_state.inserted > 0 else ""}
    """)
    if st.session_state.gotit == False:
        st.markdown("*You can always return to this panel by clicking the arrow on the top left.*")
        st.session_state.gotit = st.button("Let's start!", key=None, help=None, use_container_width=True) 


@st.dialog('Form')
def form():
    st.markdown("**❗ Please answer every question to proceed.**")
    st.session_state.user_id = st.text_input(label="Enter your Prolific ID", value=st.session_state.user_id)
    st.session_state.age = st.text_input("How old are you in years?")
    st.session_state.gender = st.radio("Do you describe yourself as a man, a woman, or in some other way?", 
                ['','Man', 'Woman', 'Other'])
    st.session_state.education = st.radio("What is the highest level of education you completed?", 
                ['', 
                'Did not graduate high school', 
                'High school graduate, GED, or alternative', 
                'Some college, or associates degree',
                "Bachelor's (college) degree or equivalent",
                "Graduate degree (e.g., Master's degree, MBA)",
                'Doctorate degree (e.g., PhD, MD)'])
    st.session_state.residence = st.radio("What type of a community do you live in?", 
                ['', 'Urban','Suburban','Rural','Other'])
    st.session_state.property = st.radio("Do you own or rent the home in which you live?", 
                ['', 'Own','Rent','Neither (I live rent-free)',
                'Other' ])
    st.session_state.politics = st.radio('What is your political orientation?', ['', 'Extremely liberal', 'Liberal', 'Slightly liberal', 'Moderate', 'Slightly conservative', 'Conservative', 'Extremely conservative'])
    st.session_state.climate_actions = st.text_area('Please describe any actions you are taking to address climate change? Write *None* if you are not taking any.')
    st.session_state.impact_open = st.text_area('What do you believe is the single most effective action you can take to reduce carbon emissions that contribute to climate change?')

    st.session_state.recycling = st.slider('What percentage of plastic produced gets recycled?', 0, 100, value=0)

    st.markdown("**Do you agree or disagree with the following statements?**")
    st.session_state.ev = st.radio("Electric vehicles don't have enough range to handle daily travel demands.", ["", "Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"])
    st.session_state.fossil = st.radio('The fossil fuel industry is trying to shift the blame away from themselves by emphasizing the importance of individual climate action.', ["", "Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"])
    st.session_state.aerosol = st.radio('The use of aerosol spray cans is a major cause of climate change.', ["", "Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"])
    st.session_state.diet = st.radio('Lab-grown meat produces up to 25 times more CO2 than real meat.', ["", "Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"])


    columns_form = st.columns((1,1,1))
    with columns_form[2]:
        submitted = st.button("Proceed",use_container_width=True, 
                              help = 'Please answer every question and click *Proceed* to start a conversation.',
                              disabled = not (all(st.session_state[field] != '' for field in st.session_state.fields) and st.session_state.recycling != 0))

    if submitted:

        user_data = {key: st.session_state[key] for key in st.session_state.fields}
        user_data["model"] = st.session_state["model"]
        user_data["condition"] = st.query_params['p']
        user_data["start_time"] = st.session_state.start_time
        user_data["inserted"] = st.session_state.inserted
        user_data["submission_time"] = datetime.now()
        
        from pymongo.mongo_client import MongoClient
        from pymongo.server_api import ServerApi
        with MongoClient(st.secrets["mongo"],server_api=ServerApi('1')) as client:
                db = client.chat
                collection = db.app
                collection.insert_one(user_data)  
                st.session_state.inserted += 1
        st.session_state.submitted = True
        setup_messages()
        st.rerun()

if st.session_state.gotit and st.session_state.submitted == False:
    form()

for message in st.session_state.messages:
    if message['role']!='system':
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

@st.dialog('Submit conversation')
def submit():
    st.markdown("You must answer all questions marked with a ❗ to submit.")
    if st.query_params["p"] != "n":
        st.slider('❗ How would you rate the conversation on a scale from *Terrible* to *Perfect*?', 0, 100, format="", key="score", value=50)
        st.slider('❗ How personalized did the conversation feel, on a scale from *Not at all* to *Extremely personalized*?', 0, 100, format="", key="personalization_score", value=50)
        st.slider('❗ How knowledgeable do you feel the chatbot was, on a scale from *Not at all* to *Extremely knowledgeable*?', 0, 100, format="", key="knowledge_score", value=50)
    else:
        st.session_state.score = 0
        st.session_state.personalization_score = 0
        st.session_state.knowledge_score = 0

    st.text_area('Any feedback?',key="feedback")
    if st.button('Submit', key=None, help=None, use_container_width=True, disabled=st.session_state.score==50 or st.session_state.personalization_score==50):
        keys = [
                "user_id", "messages", 
                "score", "personalization_score", "knowledge_score", 
                "model", "feedback", 
                "age", "gender", "education", "residence", "property", "politics",
                "climate_actions", "impact_open", 
                "recycling", "ev", "fossil", "aerosol", "diet",
                "inserted", "start_time", 
                "convo_start_time"
            ]

        user_data = {key: st.session_state[key] for key in keys}
        user_data["condition"] = {st.query_params['p']}
        user_data["submission_time"] = datetime.now()
        
        from pymongo.mongo_client import MongoClient
        from pymongo.server_api import ServerApi
        with MongoClient(st.secrets["mongo"],server_api=ServerApi('1')) as client:
                db = client.chat
                collection = db.app
                collection.insert_one(user_data)  
                st.session_state.inserted += 1
                
                st.success('**Your conversation has been submitted! Please proceed with the survey.**', icon="βœ…")

                time.sleep(10)
                setup_messages()
                st.rerun()

if len(st.session_state.messages) >= st.session_state.max_messages:
    st.info(
        "You have reached the limit of messages for this conversation. Please end and submit the conversatione."
    )

elif st.session_state.submitted == False:
    pass

elif st.query_params["p"] == "n":
    st.markdown("""
                You have not been selected to have a conversation with the chatbot.

                ❗ **Please press *End Conversation* to submit your data and proceed with the survey. You have to submit to receive compensation.** 
                """)
    columns = st.columns((1,1,1))
    with columns[2]:
        if st.button("End Conversation",use_container_width=True):
            submit()

elif prompt := st.chat_input("Ask a question about climate action..."):   

    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    with st.chat_message("assistant"):
        try:
            stream = client.chat.completions.create(
                model=st.session_state["model"],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                max_tokens=None,
                temperature=0.6,
                top_p=0.7,
                top_k=50,
                stop=["<|end▁of▁sentence|>"],
                stream=True
            )
            
            response = st.write_stream(generate_tokens(stream)) 
            print(response)
            st.session_state.messages.append(
                {"role": "assistant", "content": response}
            )
        except:
            st.session_state.max_messages = len(st.session_state.messages)
            rate_limit_message = """
                Oops! Sorry, I can't talk now. Too many people have used
                this service recently.
            """
            st.session_state.messages.append(
                {"role": "assistant", "content": rate_limit_message}
            )
            st.rerun()

if len(st.session_state.messages) > 10 or st.session_state.max_messages == len(st.session_state.messages):
    columns = st.columns((1,1,1))
    with columns[2]:
        if st.button("End Conversation",use_container_width=True):
            submit()