Spaces:
Sleeping
Sleeping
File size: 13,231 Bytes
2a3f220 9fd35e2 2a3f220 9fd35e2 2a3f220 9fd35e2 2a3f220 86e0eb6 2a3f220 e1e090f 9420452 86e0eb6 2a3f220 9fd35e2 2a3f220 9fd35e2 2a3f220 9c3cfcb 2a3f220 9c3cfcb 2a3f220 9fd35e2 2a3f220 9fd35e2 2a3f220 9fd35e2 2a3f220 9fd35e2 2a3f220 9fd35e2 f81587e 9fd35e2 f81587e 9fd35e2 f81587e 2a3f220 9fd35e2 2a3f220 9fd35e2 c225cb1 2a3f220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import streamlit as st
#from openai import OpenAI
from together import Together
from datetime import datetime
import time
st.set_page_config(
page_title="Chat with me!",
page_icon="π",
initial_sidebar_state="expanded",
layout="wide"
)
st.markdown(
""" <style>
div[role="radiogroup"] > :first-child{
display: none !important;
}
</style>
""",
unsafe_allow_html=True
)
### Setting up the session state
def generate_tokens(response):
for token in response:
if hasattr(token, 'choices') and token.choices:
content = token.choices[0].delta.content
if content:
yield content
def format_personalization(text):
try:
for key, value in st.session_state.items():
text = text.replace(f"[{key.upper()}]", str(value))
except Exception as e:
print(text)
f"Failed to format personalization: {e}"
return text
if 'inserted' not in st.session_state:
### read in txts
with open('base.txt', 'r') as file:
st.session_state.base_text = file.read()
with open('knowledge.txt', 'r') as file:
st.session_state.knowledge_text = file.read()
with open('personalization.txt', 'r') as file:
st.session_state.personalization_text = file.read()
# web app state
st.session_state.gotit = False
st.session_state.inserted = 0
st.session_state.submitted = False
st.session_state["model"] = "deepseek-ai/DeepSeek-V3"
st.session_state.max_messages = 50
st.session_state.messages = []
# user info state
st.session_state.fields = [
'climate_actions', 'age', 'gender', 'education', 'residence', 'property',
'politics', 'impact_open', 'ev',
'fossil', 'aerosol', 'diet', 'recycling',
'user_id'
]
for field in st.session_state.fields:
st.session_state[field] = ''
st.session_state.recycling = 0
# timers
st.session_state.start_time = datetime.now()
st.session_state.convo_start_time = ''
if 'p' not in st.query_params:
st.query_params['p'] = 't'
def setup_messages():
# t = personalization
# k = knowledge
# f = formatting
# n = no chat
if st.query_params["p"] == "f" or st.query_params["p"] == "n":
st.session_state.system_message = st.session_state.base_text
elif st.query_params["p"] == "k":
st.session_state.system_message = st.session_state.knowledge_text
elif st.query_params["p"] == "t":
st.session_state.system_message = format_personalization(st.session_state.personalization_text)
st.session_state.messages = [{ "role": "system", "content": st.session_state.system_message}]
st.session_state.convo_start_time = datetime.now()
client = Together(api_key=st.secrets["TOGETHER_API_KEY"])
### App interface
with st.sidebar:
st.markdown("# Let's talk climate action!")
st.markdown(f"""
{"β" if st.session_state.submitted else "β"} **Step 1. Complete a form.**
{"β" if len(st.session_state.messages) > 0 else "β"} **Step 2. Type in the chat box to start a conversation.**
You should ask a climate change related question like:
- *What are the most effective actions to reduce my carbon emissions?*
- *What's better for the environment: a year of vegetarianism or skipping one transatlantic flight?*
- *How do the emissions saved by switching to an EV compare to recycling for a year in terms of trees planted?*
If you're unsure about a metric or number, simply ask the chatbot for an explanation.
You must respond **at least 5 times** before you can submit the conversation. An *End Conversation* button will appear then. You are free to continue the conversation further before you submit it.
{"β" if st.session_state.inserted > 0 else "β"} **Step 3. Use the *End Conversation* button to submit your response.**
You have to submit your conversation to receive compensation.
{"π **All done! Please press *Next* in the survey.**" if st.session_state.inserted > 0 else ""}
""")
if st.session_state.gotit == False:
st.markdown("*You can always return to this panel by clicking the arrow on the top left.*")
st.session_state.gotit = st.button("Let's start!", key=None, help=None, use_container_width=True)
@st.dialog('Form')
def form():
st.markdown("**β Please answer every question to proceed.**")
st.session_state.user_id = st.text_input(label="Enter your Prolific ID", value=st.session_state.user_id)
st.session_state.age = st.text_input("How old are you in years?")
st.session_state.gender = st.radio("Do you describe yourself as a man, a woman, or in some other way?",
['','Man', 'Woman', 'Other'])
st.session_state.education = st.radio("What is the highest level of education you completed?",
['',
'Did not graduate high school',
'High school graduate, GED, or alternative',
'Some college, or associates degree',
"Bachelor's (college) degree or equivalent",
"Graduate degree (e.g., Master's degree, MBA)",
'Doctorate degree (e.g., PhD, MD)'])
st.session_state.residence = st.radio("What type of a community do you live in?",
['', 'Urban','Suburban','Rural','Other'])
st.session_state.property = st.radio("Do you own or rent the home in which you live?",
['', 'Own','Rent','Neither (I live rent-free)',
'Other' ])
st.session_state.politics = st.radio('What is your political orientation?', ['', 'Extremely liberal', 'Liberal', 'Slightly liberal', 'Moderate', 'Slightly conservative', 'Conservative', 'Extremely conservative'])
st.session_state.climate_actions = st.text_area('Please describe any actions you are taking to address climate change? Write *None* if you are not taking any.')
st.session_state.impact_open = st.text_area('What do you believe is the single most effective action you can take to reduce carbon emissions that contribute to climate change?')
st.session_state.recycling = st.slider('What percentage of plastic produced gets recycled?', 0, 100, value=0)
st.markdown("**Do you agree or disagree with the following statements?**")
st.session_state.ev = st.radio("Electric vehicles don't have enough range to handle daily travel demands.", ["", "Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"])
st.session_state.fossil = st.radio('The fossil fuel industry is trying to shift the blame away from themselves by emphasizing the importance of individual climate action.', ["", "Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"])
st.session_state.aerosol = st.radio('The use of aerosol spray cans is a major cause of climate change.', ["", "Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"])
st.session_state.diet = st.radio('Lab-grown meat produces up to 25 times more CO2 than real meat.', ["", "Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"])
columns_form = st.columns((1,1,1))
with columns_form[2]:
submitted = st.button("Proceed",use_container_width=True,
help = 'Please answer every question and click *Proceed* to start a conversation.',
disabled = not (all(st.session_state[field] != '' for field in st.session_state.fields) and st.session_state.recycling != 0))
if submitted:
user_data = {key: st.session_state[key] for key in st.session_state.fields}
user_data["model"] = st.session_state["model"]
user_data["condition"] = st.query_params['p']
user_data["start_time"] = st.session_state.start_time
user_data["inserted"] = st.session_state.inserted
user_data["submission_time"] = datetime.now()
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
with MongoClient(st.secrets["mongo"],server_api=ServerApi('1')) as client:
db = client.chat
collection = db.app
collection.insert_one(user_data)
st.session_state.inserted += 1
st.session_state.submitted = True
setup_messages()
st.rerun()
if st.session_state.gotit and st.session_state.submitted == False:
form()
for message in st.session_state.messages:
if message['role']!='system':
with st.chat_message(message["role"]):
st.markdown(message["content"])
@st.dialog('Submit conversation')
def submit():
st.markdown("You must answer all questions marked with a β to submit.")
if st.query_params["p"] != "n":
st.slider('β How would you rate the conversation on a scale from *Terrible* to *Perfect*?', 0, 100, format="", key="score", value=50)
st.slider('β How personalized did the conversation feel, on a scale from *Not at all* to *Extremely personalized*?', 0, 100, format="", key="personalization_score", value=50)
st.slider('β How knowledgeable do you feel the chatbot was, on a scale from *Not at all* to *Extremely knowledgeable*?', 0, 100, format="", key="knowledge_score", value=50)
else:
st.session_state.score = 0
st.session_state.personalization_score = 0
st.session_state.knowledge_score = 0
st.text_area('Any feedback?',key="feedback")
if st.button('Submit', key=None, help=None, use_container_width=True, disabled=st.session_state.score==50 or st.session_state.personalization_score==50):
keys = [
"user_id", "messages",
"score", "personalization_score", "knowledge_score",
"model", "feedback",
"age", "gender", "education", "residence", "property", "politics",
"climate_actions", "impact_open",
"recycling", "ev", "fossil", "aerosol", "diet",
"inserted", "start_time",
"convo_start_time"
]
user_data = {key: st.session_state[key] for key in keys}
user_data["condition"] = {st.query_params['p']}
user_data["submission_time"] = datetime.now()
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
with MongoClient(st.secrets["mongo"],server_api=ServerApi('1')) as client:
db = client.chat
collection = db.app
collection.insert_one(user_data)
st.session_state.inserted += 1
st.success('**Your conversation has been submitted! Please proceed with the survey.**', icon="β
")
time.sleep(10)
setup_messages()
st.rerun()
if len(st.session_state.messages) >= st.session_state.max_messages:
st.info(
"You have reached the limit of messages for this conversation. Please end and submit the conversatione."
)
elif st.session_state.submitted == False:
pass
elif st.query_params["p"] == "n":
st.markdown("""
You have not been selected to have a conversation with the chatbot.
β **Please press *End Conversation* to submit your data and proceed with the survey. You have to submit to receive compensation.**
""")
columns = st.columns((1,1,1))
with columns[2]:
if st.button("End Conversation",use_container_width=True):
submit()
elif prompt := st.chat_input("Ask a question about climate action..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
try:
stream = client.chat.completions.create(
model=st.session_state["model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
max_tokens=None,
temperature=0.6,
top_p=0.7,
top_k=50,
stop=["<ο½endβofβsentenceο½>"],
stream=True
)
response = st.write_stream(generate_tokens(stream))
print(response)
st.session_state.messages.append(
{"role": "assistant", "content": response}
)
except:
st.session_state.max_messages = len(st.session_state.messages)
rate_limit_message = """
Oops! Sorry, I can't talk now. Too many people have used
this service recently.
"""
st.session_state.messages.append(
{"role": "assistant", "content": rate_limit_message}
)
st.rerun()
if len(st.session_state.messages) > 10 or st.session_state.max_messages == len(st.session_state.messages):
columns = st.columns((1,1,1))
with columns[2]:
if st.button("End Conversation",use_container_width=True):
submit()
|