Spaces:
Sleeping
Sleeping
File size: 2,062 Bytes
ffd7267 55b8eb4 1cf13d0 5aef591 ffd7267 1cf13d0 ffd7267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import torch
from torch import nn
from torchvision import datasets
from torchvision.transforms import ToTensor
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork()
model.load_state_dict(torch.load("model_mnist_mlp.pth"))
model.eval()
import gradio as gr
from torchvision import transforms
def predict(image):
tsr_image = transforms.ToTensor()(image)
with torch.no_grad():
pred = model(tsr_image)
prob = torch.nn.functional.softmax(pred[0], dim=0)
confidences = {i: float(prob[i]) for i in range(10)}
return confidences
with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", title="γγΉγ"
) as demo:
gr.HTML('<div style="font-size:12pt; text-align:center; color:yellow;"MNIST ει‘ε¨</div>')
with gr.Row():
with gr.Tab("γγ£γ³γγΉ"):
input_image1 = gr.Image(label="η»εε
₯ε", source="canvas", type="pil", image_mode="L", shape=(28,28), invert_colors=True)
send_btn1 = gr.Button("δΊζΈ¬γγ")
with gr.Tab("η»εγγ‘γ€γ«"):
input_image2 = gr.Image(label="η»εε
₯ε", type="pil", image_mode="L", shape=(28, 28), invert_colors=True)
send_btn2 = gr.Button("δΊζΈ¬γγ")
gr.Examples(['examples/example02.png', 'examples/example04.png'], inputs=input_image2)
output_label=gr.Label(label="δΊζΈ¬η’Ίη", num_top_classes=5)
send_btn1.click(fn=predict, inputs=input_image1, outputs=output_label)
send_btn2.click(fn=predict, inputs=input_image2, outputs=output_label)
# demo.queue(concurrency_count=3)
demo.launch()
### EOF ### |