Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import numpy as np | |
import os | |
import json | |
from openvino.runtime import Core # Assuming you're using OpenVINO | |
from tqdm import tqdm | |
from PIL import Image | |
from tf_post_processing import non_max_suppression #,optimized_object_detection | |
# Load the OpenVINO model | |
classification_model_xml = "./model/best.xml" | |
core = Core() | |
config = { | |
"INFERENCE_NUM_THREADS": 2, | |
"ENABLE_CPU_PINNING": True | |
} | |
model = core.read_model(model=classification_model_xml) | |
compiled_model = core.compile_model(model=model, device_name="CPU", config=config) | |
label_to_class_text = {0: 'range', | |
1: ' entry door', | |
2: 'kitchen sink', | |
3: ' bathroom sink', | |
4: 'toilet', | |
5: 'double folding door', | |
6: 'window', | |
7: 'shower', | |
8: 'bathtub', | |
9: 'single folding door', | |
10: 'dishwasher', | |
11: 'refrigerator'} | |
# Function to perform inference | |
def predict_image(image): | |
# Convert PIL Image to numpy array (OpenCV uses numpy arrays) | |
image = np.array(image) | |
temp_image =image | |
# Resize, preprocess, and reshape the input image | |
img_size = 960 | |
resized_image = cv2.resize(image, (img_size, img_size)) / 255.0 | |
resized_image = resized_image.transpose(2, 0, 1) | |
reshaped_image = np.expand_dims(resized_image, axis=0).astype(np.float32) | |
im_height, im_width, _ = image.shape | |
output_numpy = compiled_model(reshaped_image)[0] | |
results = non_max_suppression(output_numpy, conf_thres=0.2, iou_thres=0.6, max_wh=15000)[0] | |
# Prepare output paths | |
predictions = [] | |
# Draw boxes and collect prediction data | |
for result in results: | |
boxes = result[:4] | |
probs = result[4] | |
#prob0 = round(prob, 2) | |
classes = int(result[5]) | |
boxes = boxes/img_size | |
x1, y1, x2, y2 = np.uint16([ | |
boxes[0] * im_width, | |
boxes[1] * im_height, | |
boxes[2] * im_width, | |
boxes[3] * im_height | |
]) | |
if probs > 0.2: | |
cv2.rectangle(temp_image, (x1, y1), (x2, y2), (0, 0, 255), 2) | |
#label_text = f"{classes} {prob0}" | |
cv2.putText(temp_image, str(classes)+" "+str(round(float(probs),2)), (x1, y1), 0, 0.5, (0, 255, 0), 2) | |
# Store prediction info in a JSON-compatible format | |
predictions.append({ | |
"class": label_to_class_text[classes], | |
"probability": round(float(probs), 3), | |
"coordinates": { | |
"xmin": int(x1), | |
"ymin": int(y1), | |
"xmax": int(x2), | |
"ymax": int(y2) | |
} | |
}) | |
# Convert the processed image back to PIL Image for Gradio | |
pil_image = Image.fromarray(cv2.cvtColor(temp_image, cv2.COLOR_BGR2RGB)) | |
return pil_image, json.dumps(predictions, indent=4) | |
# Sample images for Gradio examples | |
# Define sample images for user convenience | |
sample_images = [ | |
"./sample/10_2.jpg", | |
"./sample/10_10.jpg", | |
"./sample/10_12.jpg" | |
] | |
# Gradio UI setup with examples | |
gr_interface = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(type="pil"), # Updated to gr.Image for image input | |
outputs=[gr.Image(type="pil"), gr.Textbox()], # Updated to gr.Image and gr.Textbox | |
title="House CAD Design Object Detection", | |
description="Upload a CAD design image of a house to detect objects with bounding boxes and probabilities.", | |
examples=sample_images # Add the examples here | |
) | |
# Launch the Gradio interface if run as main | |
if __name__ == "__main__": | |
gr_interface.launch() | |