Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
""" | |
Created on Wed Nov 13 18:37:31 2024 | |
@author: sabar | |
""" | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import os | |
import json | |
from openvino.runtime import Core # Assuming you're using OpenVINO | |
# from tqdm import tqdm | |
from tf_post_processing import non_max_suppression #,optimized_object_detection | |
# Load the OpenVINO model | |
classification_model_xml = "./model/best_openvino_model/best.xml" | |
core = Core() | |
config = { | |
"INFERENCE_NUM_THREADS": 2, | |
"ENABLE_CPU_PINNING": True | |
} | |
model = core.read_model(model=classification_model_xml) | |
compiled_model = core.compile_model(model=model, device_name="CPU", config=config) | |
label_to_class_text = { | |
0: 'range', | |
1: 'entry door', | |
2: 'kitchen sink', | |
3: 'bathroom sink', | |
4: 'toilet', | |
5: 'double folding door', | |
6: 'window', | |
7: 'shower', | |
8: 'bathtub', | |
9: 'single folding door', | |
10: 'dishwasher', | |
11: 'refrigerator' | |
} | |
# Function to perform inference | |
def predict_image(image): | |
# Resize, preprocess, and reshape the input image | |
img_size = 960 | |
resized_image = cv2.resize(image, (img_size, img_size)) / 255.0 | |
resized_image = resized_image.transpose(2, 0, 1) | |
reshaped_image = np.expand_dims(resized_image, axis=0).astype(np.float32) | |
im_height, im_width, _ = image.shape | |
output_numpy = compiled_model(reshaped_image)[0] | |
results = non_max_suppression(output_numpy, conf_thres=0.2, iou_thres=0.6, max_wh=15000)[0] | |
# Prepare output paths | |
output_path = "./output_file_train/" | |
output_image_folder = os.path.join(output_path, "images_alienware_openvino/") | |
os.makedirs(output_image_folder, exist_ok=True) | |
output_json_folder = os.path.join(output_path, "json_output/") | |
os.makedirs(output_json_folder, exist_ok=True) | |
predictions = [] | |
# Draw boxes and collect prediction data | |
for result in results: | |
boxes = result[:4] | |
prob = result[4] | |
classes = int(result[5]) | |
x1, y1, x2, y2 = np.uint16([ | |
boxes[0] * im_width, | |
boxes[1] * im_height, | |
boxes[2] * im_width, | |
boxes[3] * im_height | |
]) | |
if prob > 0.2: | |
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 0), 2) | |
label_text = f"{classes} {round(prob, 2)}" | |
cv2.putText(image, label_text, (x1, y1), 0, 0.5, (0, 255, 0), 2) | |
# Store prediction info in a JSON-compatible format | |
predictions.append({ | |
"class": label_to_class_text[classes], | |
"probability": round(float(prob), 2), | |
"coordinates": { | |
"xmin": int(x1), | |
"ymin": int(y1), | |
"xmax": int(x2), | |
"ymax": int(y2) | |
} | |
}) | |
# Save the processed image and JSON file | |
output_image_path = os.path.join(output_image_folder, "result_image.jpg") | |
cv2.imwrite(output_image_path, image) | |
output_json_path = os.path.join(output_json_folder, "predictions.json") | |
with open(output_json_path, 'w') as f: | |
json.dump(predictions, f, indent=4) | |
return output_image_path, predictions | |
# Set up Gradio interface to read from sample folder | |
def gradio_interface(): | |
# sample_folder = "./sample" # Folder containing sample images | |
# Sample images for demonstration (make sure these image paths exist) | |
sample_images = [ | |
"./sample/10_2.jpg", # replace with actual image paths | |
"./sample/10_10.jpg", # replace with actual image paths | |
"./sample/10_12.jpg" # replace with actual image paths | |
] | |
# image_paths = [os.path.join(sample_folder, img) for img in os.listdir(sample_folder) if img.endswith(('.png', '.jpg', '.jpeg'))] | |
results = [] | |
os.makedirs("samples", exist_ok=True) | |
for image_path in sample_images: | |
image = cv2.imread(image_path) | |
output_image_path, predictions = predict_image(image) | |
results.append({ | |
"image_path": output_image_path, | |
"predictions": predictions | |
}) | |
return results | |
# Launch the Gradio app | |
gr.Interface( | |
fn=gradio_interface, | |
inputs=None, | |
outputs="json", | |
title="OpenVINO Model Inference with Gradio", | |
description="Reads images from the 'sample' folder to get model predictions with bounding boxes and probabilities." | |
).launch() | |